Martin Jullum
Martin Jullum
Home
Talks
Publications
Side projects
Light
Dark
Automatic
Publications
Last updated April 10th, 2024
Type
Conference paper
Journal article
Preprint
Thesis
Date
2024
2023
2022
2021
2020
2019
2017
2016
2015
2012
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
,
Anders Løland
(2024).
MCCE: Monte Carlo sampling of valid and realistic counterfactual explanations for tabular data
.
Data Mining and Knowledge Discovery
.
PDF
Cite
DOI
Lars Henry Berge Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
(2024).
A comparative study of methods for estimating model-agnostic Shapley value explanations
.
Data Mining and Knowledge Discovery
.
PDF
Cite
DOI
Martin Jullum
,
Jacob Sjødin
,
Robindra Prabhu
,
Anders Løland
(2023).
eXplego: An interactive Tool that Helps you Select Appropriate XAI-methods for your Explainability Needs
.
xAI-2023 Late-breaking Work, Demos and Doctoral Consortium Joint Proceedings
.
PDF
Cite
DOI
Dag Tjøstheim
,
Martin Jullum
,
Anders Løland
(2023).
Statistical Embedding: Beyond Principal Components
.
Statistical Science
.
PDF
Cite
DOI
Supplement
Dag Tjøstheim
,
Martin Jullum
,
Anders Løland
(2023).
Some recent trends in embeddings of time series and dynamic networks
.
Journal of Time Series Analysis
.
PDF
Cite
DOI
Lars Henry Berge Olsen
,
Ingrid Kristine Glad
,
Martin Jullum
,
Kjersti Aas
(2022).
Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features
.
Journal of Machine Learning Research
.
PDF
Cite
DOI
Øyvind Grotmol
,
Martin Jullum
,
Kjersti Aas
,
Michael Scheuerer
(2022).
Performance evaluation of volatility estimation methods for Exabel
.
arXiv preprint arXiv:2203.12402
.
Cite
DOI
Øyvind Grotmol
,
Michael Scheuerer
,
Kjersti Aas
,
Martin Jullum
(2022).
Exabel's Factor Model
.
arXiv preprint arXiv:2203.12408
.
PDF
Cite
DOI
Martin Jullum
,
Annabelle Redelmeier
,
Kjersti Aas
(2021).
groupShapley: Efficient prediction explanation with Shapley values for feature groups
.
arXiv preprint arXiv:2106.12228
.
PDF
Cite
DOI
Kjersti Aas
,
Thomas Nagler
,
Martin Jullum
,
Anders Løland
(2021).
Explaining predictive models using Shapley values and non-parametric vine copulas
.
Dependence Modeling
.
PDF
Cite
DOI
Kjersti Aas
,
Martin Jullum
,
Anders Løland
(2021).
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
.
Artificial Intelligence
.
PDF
Cite
DOI
Martin Jullum
,
Annabelle Redelmeier
,
Kjersti Aas
(2021).
Efficient and simple prediction explanations with groupShapley: A practical perspective
.
Italian Workshop on Explainable Artificial Intelligence 2021
.
PDF
Cite
DOI
Kary Främling
,
Marcus Westberg
,
Martin Jullum
,
Manik Madhikermi
,
Avleen Malhi
(2021).
Comparison of Contextual Importance and Utility with LIME and Shapley Values
.
International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems
.
PDF
Cite
DOI
Nikolai Sellereite
,
Martin Jullum
(2020).
shapr: An R-package for explaining machine learning models with dependence-aware Shapley values
.
The Journal of Open Source Software
.
PDF
Cite
DOI
Håkon Otneim
,
Martin Jullum
,
Dag Tjøstheim
(2020).
Pairwise local Fisher and Naı̈ve Bayes: Improving two standard discriminants
.
Journal of Econometrics
.
PDF
Cite
DOI
Martin Jullum
(2020).
Investigating mesh-based approximation methods for the normalization constant in the log Gaussian Cox process likelihood
.
Stat
.
PDF
Cite
DOI
Supplement
Annabelle Redelmeier
,
Martin Jullum
,
Kjersti Aas
(2020).
Explaining predictive models with mixed features using Shapley values and conditional inference trees
.
International Cross-Domain Conference for Machine Learning and Knowledge Extraction
.
PDF
Cite
DOI
Martin Jullum
,
Thordis Thorarinsdottir
,
Fabian E Bachl
(2020).
Estimating seal pup production in the Greenland Sea by using Bayesian hierarchical modelling
.
Journal of the Royal Statistical Society: Series C (Applied Statistics)
.
PDF
Cite
DOI
Supplement
Martin Jullum
,
Anders Løland
,
Ragnar Bang Huseby
,
Geir Ånonsen
,
Johannes Lorentzen
(2020).
Detecting money laundering transactions with machine learning
.
Journal of Money Laundering Control
.
PDF
Cite
DOI
Martin Jullum
,
Nils Lid Hjort
(2019).
What price semiparametric Cox regression?
.
Lifetime data analysis
.
PDF
Cite
DOI
Supplement
Lars Holden
,
Martin Jullum
,
Geir Kjetil Sandve
(2017).
Statistical modeling of repertoire overlap in entire sampling spaces
.
NR-note SAMBA/13/17, Norwegian Computing Center
.
PDF
Cite
Martin Jullum
,
Nils Lid Hjort
(2017).
Parametric or nonparametric: The FIC approach
.
Statistica Sinica
.
PDF
Cite
DOI
Supplement
Gudmund Hermansen
,
Nils Lid Hjort
,
Martin Jullum
(2016).
Parametric or nonparametric: The FIC approach for stationary time series
.
Technical Report, Department of Mathematics, University of Oslo
.
PDF
Cite
Martin Jullum
(2016).
New focused approaches to topics within model selection and approximate Bayesian inversion
.
PDF
Cite
DOI
Odd Kolbjønsen
,
Arild Buland
,
Ragnar Hauge
,
Per Røe
,
Martin Jullum
,
Richard William Metcalfe
,
Øyvind Skjæveland
(2016).
Bayesian AVO inversion to rock properties using a local neighborhood in a spatial prior model
.
The Leading Edge
.
PDF
Cite
Martin Jullum
,
Odd Kolbjørnsen
(2016).
A Gaussian-based framework for local Bayesian inversion of geophysical data to rock properties
.
Geophysics
.
PDF
Cite
DOI
Gudmund Horn Hermansen
,
Nils Lid Hjort
,
Martin Jullum
(2015).
Parametric or nonparametric: The FIC approach for stationary time series
.
Proceedings of the 60th World Statistics Congress of the International Statistical Institute
.
PDF
Cite
Martin Jullum
,
Odd Kolbjørnsen
(2015).
An approximate Bayesian inversion framework based on local-Gaussian likelihoods
.
Petroleum Geostatistics 2015
.
PDF
Cite
DOI
Martin Jullum
(2012).
Focused Information criteria for selecting among parametric and nonparametric models
.
PDF
Cite
Cite
×