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SUMMARY
We derive a Bayesian statistical procedure for inversion of geophysical data to rock properties. The
procedure is for simplicity presented in the seismic AVO setting where rock properties influence the data
through elastic parameters. The framework may however easily be extended. The procedure combines
sampling based techniques and a compound Gaussian approximation to assess local approximations to
marginal posterior distributions of rock properties, which the inversion is based on. The framework offers
a range of approximations where inversion speed and accuracy may be balanced. The approach is also well
suited for parallelisation, making it attractive for large inversion problems. We apply the procedure to a 4D
CO2 monitoring case with focus on predicting saturation content. Promising results are obtained for both
synthetic and real data. Finally we compare our method with regular linear Gaussian inversion for density
prediction, where our method gives an improved fit.
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 Introduction 

Various types of inverse problems abound in the geophysical industry. These problems are typically 
hard to solve, being ill-posed without a unique mathematical solution. Within the petroleum industry, 
the final objective of these problems is often to predict rock properties such as porosity, permeability, 
lithology, saturation etc. based on geophysical data stemming from geophysical exploration methods 
such as seismology surveys. Bayesian statistical inversion approaches are attractive as they give the 
ability to incorporate additional knowledge of the problem through prior distributions, and solve the 
inversion problems in a unified way by simply consulting the resulting posterior distribution (Grana 
and Mukerji, 2015). Computing the posterior distribution is however terribly difficult in almost all 
relevant realistic cases. Short on computational advance, attempts to compute posterior distributions 
or related quantities typically involve some kind of simplification, approximation or intelligent 
elimination of redundancy. We present a general framework for Bayesian statistical inversion from 
geophysical data to rock properties by combining sampling based techniques with local compound 
Gaussian approximations and utilize the simplification this local focus allows for. 

Methodology 

Although the present methodology is not restricted to inversion of specific types of geophysical data, 
we shall for presentational simplicity be working with seismic AVO (Amplitude Versus Offset) data. 
Let us introduce the following global quantities:  denotes one or more rock properties as exemplified 
above;  denotes geophysical properties or elastic parameters like e.g. Vp, Vs, and ; and  denotes 
the geophysical seismic AVO data at a few different offsets. Let further  and  denote 
respectively the pre-defined global geophysical and rock physical likelihoods, and let  denote the 
prior for the rock property of interest. Denote by  a specified grid on the reservoir region of interest. 
Our approach consists of approximating the marginal posterior distribution of the rock properties 

 in each cell  in . Let us therefore first discuss inversion for one such cell  Let then
, and  denote neighbourhood sets around  related to respectively  

and . The corresponding variable subsets  and  act as local influence variables. These are 
the subsets of their corresponding global variables which influence the target variable  (being the 
rock property in cell  and each other the most. Hence, we will approximate models and perform 
inversion for based on these influence variables solely.  

Our approach relies on the following relation 

 (1) 

where denotes the set that excludes  from . We will approximate the local likelihood 
 by a (compound) Gaussian approximation  and compute quantities related to 
 by a weighted Monte Carlo sampling approach using samples from   

The Gaussian approximation  will be obtained by compounding an approximate local 
geophysical likelihood  and an approximate local rock physical likelihood , 
where the former will be required to have a mean which is linear in  and covariance structure 
independent of .  

In the seismic AVO setting, the global geophysical likelihood model may often be written as 

 (2) 

where  is a matrix of appropriate dimension representing the linear dependence structure of the 
seismic data on the elastic properties, and  is a zero-mean error term. Typically  is assumed to be 
Gaussian with covariance matrix . This corresponds to . The straight forward 
natural approach for approximating  is then to use 

 (3) 
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 where  is the submatrix of  containing the rows corresponding to  and columns corresponding 
to , and similarly  is the submatrix of  with columns and rows corresponding to . 
 
Approximating the local rock physics likelihood  is more involved as the global analogue is 
typically neither Gaussian nor linearly dependent on . Thus, we suggest using a sampling based 
approach to estimate mean and covariance matrix functions of a Gaussian distribution on the form 
 

  (4) 
 

where  is some mean function depending on  in some way, and  is some 
covariance function depending on a categorical variable  for a fixed integer  The 
mean and covariance matrix functions may be estimated from a large number  of samples 

, . Our suggested approach is to first split the set of samples into subsets 
categorized by . Then for each of these categories, use a flexible (nonlinear) regression 
procedure to approximate the mean function , compute the resulting 

residuals  and use those to estimate the covariance matrix . Finally 
we set  equal to  when . We tend to use multivariate adaptive regression 
splines (MARS) for the regression, and a range spanning covariance estimation routine based on the 
regular sample covariance to estimate the  covariance matrices, but other choices are of course 
possible. The main point here is to be flexible and use enough samples for the mean behaviour and 
dependence structure of  to be well approximated by those used in  
 
By compounding the two approximate Gaussian likelihoods  and , we obtain 
 

  (5) 
   

where  and  which may be inserted in 
equation (1) for an integral form approximation to the posterior of . Finally a weighted Monte Carlo 
approach may be applied to approximate in principle any quantity related to this posterior distribution. 

That is, by sampling  times from , weighting  in each sample  by the normalized 

likelihood approximation ), for  and finally aggregate 
these weighted samples properly in terms of the quantity of interest.  
 
Methodology for inversion of a single cell  is now established. Inversion of the complete region  is 
then performed by simply repeating the procedure for each  with  in . Assume now that the 
influence variables shift with  (i.e. their location depends only on ) and that  
is stationary with respect to  for all of (or at least larger parts of) . Then, when the compound 
Gaussian likelihood in equation (5) is built once, that approximation is valid for each  for which the 
stationarity assumption holds. Also, the same prior samples from  may be used in the final step. 
Those assumptions are not required for our methodology to work out, but give a computationally 
cheap algorithm as one may pre-evaluate parts of the likelihood  and heavily parallelise the 
Monte Carlo algorithm. The only requirement for our approach to be applicable is actually that 

is (approximately) Gaussian and that one somehow may sample from  
Specification of the neighbourhood sets ,  and , and categorisation function , may typically 
be done using knowledge of the underlying features of the data and models, supported by 
performance achieved on synthetic test data. This should typically be done by balancing accuracy and 
inversion speed. 

Application 

To illustrate our approach, consider a 4D survey of the Utsira formation from the Sleipner field 
offshore Norway. Here CO2 has been injected for storage, and base and monitor surveys has been 
conducted. The CO2 is typically trapped beneath thin layers of shale within the formation. The main 
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 objective is to ‘map’ the CO2 through the saturation at different positions in the formation. The 
saturation was in principle zero everywhere at the time of the base survey. We focus on the saturation 
( ) at the time of one monitor survey, and use data and models working on the difference in seismic 
data, elastic parameters and saturation between those two surveys. Let  denote the change in aligned 
seismic angle gathers from base to monitor time, let  denote the change in the logarithm of P-wave 
and S-wave velocity and density from base to monitor time. 
 
The model setup here possesses only vertical spatial dependencies. Adjacent cells are generally more 
correlated than distant ones and stationarity with respect to  is assumed. The model parts are briefly 
as follows: with probability 0.99 and otherwise Beta -distributed. The global rock 
physics model  has a rock matrix consistent with loose sand, and the effect of the saturation is 
modelled by fluid substitution with a homogenous fluid mix (Gassmann’s equations). The global 
geophysical model  is on the form of (2) with  corresponding to the difference effect of 25, 
30 and 35Hz Ricker wavelets for the weak-contrast coefficients with offsets 12.5°, 25° and 40°.  
specifies standard deviations of 0.5, 0.5 and 0.2 for the 3 offsets with independence between them. 
 
For the real data we concentrate on a 2D region positioned 800m below the sea level and intersecting 
the injection well and spanning 5550m 334ms. Each cell is of size 50m 2ms. Figure 1 show the 
seismic difference data for that region (left panel), the resulting approximate cell-wise marginal 
posterior means (upper right panel) and more detailed inversion results for a vertical trace lateral 
position 2000-2050m, close to the injection well (lower right panels). The resulting cell-wise posterior 
means, which we take as the pointwise predictions of the saturation, match well with the reflections in 
the seismic data. The vertical plot shows 5 main layers of increased saturation at that trace. The two 
shallowest and the deepest are fairly certain, while the other two are although predicted, quite 
uncertain. The predictions are consistent with qualitative interpretations previously conducted in the 
formation. A total of  samples from the prior  were used in the inversion. 
  
In tests with synthetic data, the selected method achieved performance as follows: About 98.3% of the 
cells with a saturation level of less than 0.1 did ‘correctly’ have a posterior expectation less than 0.1. 
Conversely 97% of the cells which had saturation level above 0.1 did ‘correctly’ have a posterior 
expectation above 0.1. That is, the proportions of cells which are false positives and false negatives 
are about 1.7% and 3% when using the resulting approximate posterior mean (with boundary level at 
0.1) as a classifier of significant saturation presence. 

Finally we leave the goal of prediction saturation and turn to prediction of density (  at monitor time 
instead. With this focus, our method may easily be compared to regular ‘Gaussian inversion’ (Buland 
and Omre, 2003) which in principle assumes everything is Gaussian and linear. For a synthetic 2D 
region similar to the above, Figure 2 shows the resulting posterior means of log-densities for our 
method (upper left panel) and the regular Gaussian inversion (lower left panel), in addition to the true 
synthetic log-densities (upper right panel). Our method clearly outperforms regular Gaussian 
inversion. In the latter the posterior means are less clear and distinct compared to those based on our 
method. Many low density areas are missed and many high density areas are falsely predicted. The 
general mean picture is also noisy.  

Conclusion 

We presented a general framework for inversion of geophysical data to rock properties based on 
approximating local Gaussian likelihoods followed by a weighted Monte Carlo sampling scheme. The 
approach is tested on a 4D CO2-monitoring case with promising results both for synthetic and real 
data. The approach is well suited for parallelisation, making it attractive for large inversion problems. 
Specifically, inversion of the real data 2D region, having more than 18000 cells, took less than half an 
hour on a Windows based laptop without m speed boosting attempts. A final conceptual advantage of 
our general approach, as opposed to other alternatives, is that we may start from realistic prior 
distributions and models which we approximate directly – without having the full procedure being 
limited by a specific assumption for the spatial relations. 
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Figure 1 Seismic difference data and resulting approximate inversion results for the real data case. 

Figure 2 Comparing our method and standard Gaussian inversion to density (  for synthetic data. 
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