
PARAMETRIC OR NONPARAMETRIC: THE FIC APPROACH FOR
STATIONARY TIME SERIES

Gudmund Hermansen, Nils Lid Hjort and Martin Jullum

Department of Mathematics, University of Oslo

Abstract. We seek to narrow the gap between parametric and nonparametric mod-

elling of stationary time series processes. The approach is inspired by recent advances

in focused inference and model selection techniques. The paper generalises and extends

recent work by developing a new version of the focused information criterion (FIC), di-

rectly comparing the performance of parametric time series models with a nonparametric

alternative. For a pre-specified focused parameter, for which scrutiny is considered valu-

able, this is achieved by comparing the mean squared error of the model-based estimators

of this quantity. In particular, this yields FIC formulae for covariances or correlations at

specified lags, for the probability of reaching a threshold, etc. Suitable weighted average

versions, the AFIC, also lead to model selection strategies for finding the best model for

the purpose of estimating e.g. a sequence of correlations.
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1. Introduction and summary

The focused information criterion (FIC) was introduced in Claeskens & Hjort (2003)

and is based on estimating and comparing the accuracy of model-based estimators for a

chosen focus parameter. This focus, say µ, ought to have a clear statistical interpretation

across candidate models. For a given candidate model, µ is traditionally expressed as a

function of this model’s parameters. In general, the focus parameter can be any sufficiently

smooth and regular function of the underlying model parameters, or more generally its

spectral distribution. This includes quantiles, regression coefficients, a specified lagged

correlation, but also various types of predictions and data dependent functions, to name

some; see Hermansen & Hjort (2015) for a more complete list and discussion of valid focus

parameters for time series models.

Suppose there are candidate models M1, . . . ,Mk, leading to focus parameter estimates

µ̂1, . . . , µ̂k, respectively. The underlying idea leading to the FIC is to estimate the mean

squared error (mse) of µ̂j for each candidate model and then select the model that achieves

the smallest value. The mse in question is

msej = E (µ̂j − µtrue)
2 = bias(µ̂j)

2 + Var µ̂j,
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comprising the variance and the squared bias in relation to the true parameter value µtrue.

Thus the FIC consists of finding ways of assessing, approximating and then estimating the

msej for each candidate model. The winning model is the one with smallest m̂sej. How

this may be done depends on both the candidate models and the focus parameter, as well

as on other characteristics of the underlying situation. The FIC apparatus hence leads

to different types of formulae in different setups; see Claeskens & Hjort (2008, Ch. 5 &

6) for a fuller discussion and illustrations of such criteria for selection among parametric

models.

Most FIC constructions have been derived by relying on a suitably defined local

misspecification framework, see again Claeskens & Hjort (2008, Ch. 5 & 6). In such

a framework the true model is assumed to gradually shrink with the sample size, starting

from the biggest ‘wide’ model and hitting the simplest ‘narrow’ model in the limit. In

addition, and all candidate models need to lie between these two model extremes. In the

various data settings, such frameworks typically result in squared biases and variances of

the same asymptotic order, motivating certain approximation formulae for the m̂sej in

question. In Hermansen & Hjort (2015) such a framework is used to derive FIC machinery

for choosing between parametric time series models within broad classes of time series

models. See Section 7.5 for some further remarks.

The aim of the present paper is to derive FIC machinery which will justify comparison

and selection among both parametric and nonparametric candidate models. The deriva-

tion will be somewhat different from that of Claeskens & Hjort (2003) and Hermansen

& Hjort (2015) in that we do not rely on a certain local misspecification framework.

We rather take a more direct approach following reasoning similar to the development

of Jullum & Hjort (2015), where focused inference and model selection among paramet-

ric and nonparametric models are developed for independent observations. By including

a nonparametric candidate among the parametric models, we will in particular be able

to detect whether our parametric models are off-target. This FIC construction, with a

nonparametric alternative, therefore has a built-in insurance mechanism against poorly

specified parametric candidates. When one or more parametric models are adequate, such

are selected as they typically have lower variance.

Though our methods will be extended to more general setups later, we start our de-

velopments with the class of zero-mean stationary Gaussian time series processes. Let

{Yt} be such a process. Then the dependency structure, which in such cases deter-

mines the entire model, is completely specified by the corresponding covariance function

C(k) = cov(Yt, Yt+k), defined for all lags k = 0, 1, 2, . . .. Here we will, for mathematical

convenience, work with the frequency representation, where the covariance function C(k)
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can be represented by a unique spectral distribution G such that

C(k) =

∫ π

−π
eikω dG(ω) = 2

∫ π

0

cos(kω)g(ω) dω, (1.1)

provided the corresponding spectral distribution G has a continuous and symmetric den-

sity g. See among others Brillinger (1975), Priestley (1981) or Dzhaparidze (1986) for a

general introduction to time series modelling in the frequency domain. When necessary,

we will write Cg to indicate that this is the covariance indexed by the spectral density

g. Note also that we can obtain the spectral density as the Fourier transform of the

covariance function.

The types of parametric models we will consider are typically the classical autore-

gressive (AR), moving average (MA) and the mixture (ARMA), all of which have clear

and well defined corresponding spectral densities; see e.g. Brockwell & Davis (1991) for

an introduction to time series modelling with such models. Note that the theory devel-

oped here is general, and that there is nothing other than convenience that restricts us to

these particular classes of parametric models. For an observed series y1, . . . , yn, the raw

periodogram

In(ω) =
1

2πn

∣∣∣∣ n∑
t=1

yt exp(iωt)

∣∣∣∣2, for − π ≤ ω < π, (1.2)

will be our favourite nonparametric model for the underlying spectral density. The main

reason for not considering variations of smoothed or tapered periodogram estimators is

that we are interested in focus parameters that involves functions of the integrated spec-

trum, which essentially is a type of smoothing, rendering the pre-smoothing of the raw

periodogram less critical and often unnecessary.

We will start out considering a class of focus functions of the type

µ(G;h0) =

∫ π

−π
h0(ω) dG(ω), (1.3)

where h0 is a piecewise continuous and bounded function on [−π, π], with potentially a

finite number of jump discontinuities. This class includes e.g. the covariance function,

which is easily seen from (1.1) above, and allows studying specific parts of the spectral

density by using indicator functions; see also Gray (2006) for further illustrations involving

quantities of type (1.3).

Finding the best model to estimate the integrated spectrum (or total power/energy)

over a specific region, may be an interesting and important applications in several areas

of research; like pharmacology, astronomy, oceanography and in the interpretation of

seismic data. The reason is that in all of these situations the observed time series is

converted into the associated spectra, where the processed spectral density and especially

the energy over certain regions of frequencies, have clear interpretations. For example, in
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Figure 1.1. The true spectral density and the raw periodogram from a simulated au-

toregressive time series of order 4, with length n = 100 and parameters

ρ = (0.2, 0.2,−0.1,−0.2) and σ = 1.30. The shaded regions corresponds to

three different focus parameters, namely, the integrated spectrum (or total

energy) over that particular region.

pharmacology the spectrum of EEG/ERP signals may be used to quantify certain brain

functions, indicating e.g. the effect of a potential drug. In such applications, the different

models may not always have clear interpretations as time series, per se. The FIC is

nevertheless able to rank the fitted models in terms of estimated precision of estimates,

for the focus parameter in question. This general idea and particular usage of the FIC is

illustrated in Figures 1.1 and 1.2 using simulated data from an autoregressive model of

order 4, for focus parameters

µj =

∫ π

0

I(aj ≤ ω < bj)g(ω) dω = G(bj)−G(aj),

for j = 1, 2 and 3, for the corresponding intervals (aj, bj) ⊂ [0, π); which are marked by

the shaded regions in Figure 1.1. The candidate models are the autoregressive models

of order 0–4 and a nonparametric alternative based on integrating the raw periodogram

(1.2). The AR-model of order 0 corresponds to the independence model. Here, the FIC

works well: For each focus parameter it prefers models that all results in estimates that

are reasonably close to the true value; which in terms if rmse (and absolute deviation

from the truth) is not always the nonparametric or true model of order 4. Moreover,

this example also illustrates a second and important concept, namely, that one and the

same model is not necessarily best for all focus parameters. Note that the FIC prefers an

AR(3), AR(4) and AR(1) for the respective regions 1, 2, 3.
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Figure 1.2. The horizontal lines indicate the true spectral density over the three shaded

regions (of the same colour) shown in Figure 1.1; the three focus parameters

µ1, µ2 and µ3. The corresponding coloured dots show the performance, in

terms of the root of the FIC score for the nonparamteric model based on

the periodogram (n) and the autoregressive models of order 0–4, where 0

represent the model with independent.

A class of focus parameters wider than that of (1.3) takes focus parameters of the

form

µ(G;h,H) = H(µ(G;h1), . . . , µ(G;hk))

= H
(∫ π

−π
h1(ω) dG(ω), . . . ,

∫ π

−π
hk(ω) dG(ω)

)
,

(1.4)

for a k-dimensional vector function h(ω) = (h1(ω), . . . , hk(ω))t, where each of the hj is

of the above type, and H(x1, . . . , xk) a continuously differentiable function of the xj =

µ(G;hj), j = 1, . . . , k. The direct correlations

corr(Yt, Yt+k) =
cov(Yt, Yt+k)

σ2
=
C(k)

C(0)
=

∫ π
0

cos(kω) dG(ω)∫ π
0

dG(ω)
,

for example, are of type (1.4). Another class of estimands captured by (1.4) are conditional

threshold probabilities, say P{Yn+1 ≥ y |Yn = yn, . . . , Yn−k = yn−k}, as these are functions

of the (k+ 1)× (k+ 1) covariance matrix for (Yn−k, . . . , Yn, Yn+1). Later results will allow

us to reach FIC formulae for this more general class.

In Section 2 we provide a brief overview of some standard results needed to obtain

good estimates for various mean squared error quantities. Among other aspects we need

properties of maximum likelihood- or Whittle approximated estimators outside the model,

and some large-sample results regarding the periodogram. Then in Section 3 we motivate

and develop such mean squared error estimators, leading to FIC formulae. In Section 4 we
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show that under certain conditions, a detrended time series may be handled by our FIC

scheme as if it was the original time series. In Section 5 we extend the FIC methodology

by deriving an average weighted focused information criterion which aims at selecting the

best model for estimating a full set of focus parameters, possibly weighted to reflect their

relative importance for the analysis. In Section 6 we discuss certain theoretical behavioural

aspects of the derived FIC scheme, and present the results from a simulation study. Some

concluding remarks, some of which pointing to future work, are finally provided in Section

7.

2. Estimation and approximations

We start out investigating the behaviour of the two most common parametric esti-

mation procedures, those based on the maximum likelihood method and the associated

Whittle approximation to the log-likelihood. We also give some basics for nonparametric

modelling.

2.1. Maximum likelihood estimation outside the model. Let y
n

= (y1, . . . , yn)t be

a collection of n realisations from a zero mean stationary Gaussian time series process

with spectral distribution function G and corresponding spectral density g. Furthermore,

let the spectral distribution function Fθ and its corresponding spectral density fθ = f(·; θ)
index an arbitrary parametric candidate model, where θ belongs to some parameter space

Θ of dimension say p. The corresponding full log-likelihood is

`n(θ) = −n
2

log(2π)− 1

2
log |Σn(fθ)| −

1

2
yt
n
Σn(fθ)

−1y
n
, (2.1)

where Σn(fθ) is the covariance matrix with elements

Cfθ(|s− t|) = 2

∫ π

0

cos(ω|s− t|)fθ(ω) dω

for s, t = 1, . . . , n. Since the class of parametric candidate models is not assumed to

necessarily include the true g, the maximum likelihood estimator does not converge to a

‘true’ parameter value. Instead it converges to the so-called least false parameter value,

i.e. θ̃n = argmaxθ{`n(θ)} →p argminθ{d(g, fθ)} = θ0, where

d(g, fθ) =
1

4π

∫ π

−π

{ g(ω)

fθ(ω)
− 1− log

g(ω)

fθ(ω)

}
dω

= − 1

4π

∫ π

−π
{log g(ω) + 1} dω −R(G, θ),

(2.2)

and where

R(G, θ) = − 1

4π

∫ π

−π

{
log fθ(ω) +

g(ω)

fθ(ω)

}
dω
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may be referred to as the model specific part, see e.g. Dahlhaus & Wefelmeyer (1996) for

details. Furthermore, it can be shown that

√
n(θ̃n − θ0)→d J

−1
0 U ∼ Np(0, J

−1
0 K0J

−1
0 ), where U ∼ Np(0, K0), (2.3)

with J0 and K0 defined by

J0 = J(g, fθ0)

=
1

4π

∫ π

−π

[
∇Ψθ0(ω)∇Ψθ0(ω)tg(ω) +∇2Ψθ0(ω){fθ0(ω)− g(ω)}

] 1

fθ0(ω)
dω

and

K0 = K(g, fθ0) =
1

4π

∫ π

−π
∇Ψθ0(ω)∇Ψθ0(ω)t

{ g(ω)

fθ0(ω)

}2

dω,

where Ψθ(ω) = log fθ(ω). and ∇Ψθ(ω) and ∇2Ψθ(ω) are respectively the vector of partial

derivatives and matrix of second order partial derivatives with respect to θ, see Dahlhaus

& Wefelmeyer (1996, Theorem 3.3). Note that J0 = K0 under model conditions.

2.2. The Whittle approximation. The Whittle pseudo-log-likelihood is an approxi-

mation to the full Gaussian log-likelihood `n of (2.1). It was originally suggested by

P. Whittle in the 1950s (cf. Whittle (1953)), and is defined as

̂̀
n(θ) = −1

2
n
[

log(2π) +
1

2π

∫ π

−π
log{2πfθ(ω)} dω +

1

2π

∫ π

−π

In(ω)

fθ(ω)
dω
]
, (2.4)

where In(ω) = (2πn)−1|
∑

t≤n yt exp(iωt)|2 is the periodogram. This approximation is

close to the full Gaussian log-likelihood in the sense that `n(θ) = ̂̀
n(θ) + Op(1) uni-

formly in f , see Coursol & Dacunha-Castelle (1982). More important here, however, is

that (2.4) motivates an alternative estimation procedure, namely the Whittle estimator

θ̂n = argmaxθ{̂̀n(fθ)}. This estimator is easier to work with in practice (both analytically

and numerically) and shares several properties with the maximum likelihood estimator.

In particular
√
n(θ̂n − θ0) achieves the same limit distribution as in (2.3), with the same

least false parameter value θ0 as defined in relation to (2.2); see Dahlhaus & Wefelmeyer

(1996) for details. This means that in a large-sample perspective, the maximum like-

lihood estimator and the simpler Whittle estimator are equally efficient and essentially

interchangeable.

2.3. Nonparametric modelling. As mentioned in the introduction, we shall use the

periodogram in (1.2) for nonparametric modelling. Under appropriate short memory con-

ditions, it follows from Brillinger (1975, Theorem 5.5.2) that E{In(ω)} = g(ω) +O(n−1),

i.e. that the periodogram is asymptotically unbiased as an estimator of the spectral den-

sity. We shall thus use

Ĝn(ω) =

∫ ω

−π
In(u) du, (2.5)
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as a canonical estimator for the spectral distribution G; for which

√
n(Ĝn(ω)−G(ω))→d N

(
0, 4π

∫ ω

−π
g(u)2 du

)
,

see e.g. Taniguchi (1980).

3. Parametric versus nonparametric

We shall now obtain large-sample approximations for the focus parameter estimators.

These shall then be used to construct approximate mse formulae for each model’s estimator

of the focus parameter. When estimated these mses then give the FIC formulae.

3.1. How to compare parametric and nonparametric models? In completely gen-

eral terms, let µ(G) be a focus function, i.e. a functional mapping of the spectral distri-

bution G to a scalar value. This may be estimated parametrically by estimators of the

form µ̂pm = µ(Fθ̂n), or nonparametrically by µ̂np = µ(Ĝn). Other estimators of θ and G

may also be used, however. Typically, the collection of parametric candidate models does

not include the true G. The question is then which model should we use – parametric or

nonparametric – for estimating the focus parameter.

Assume for the nonparametric and each of the parametric candidate models that

√
n(µ̂np − µtrue)→d N(0, vnp) and

√
n(µ̂pm − µ0)→d N(0, vpm),

where µtrue = µ(G) is the true value of the focus parameter and µ0 = µ(Fθ0) is the focus

function evaluated under the least false parametric model Fθ0 as discussed in relation

to (2.2). Then, without going into details, the large-sample results above motivate the

following first-order approximations for the mse of the estimated focus parameters:

msenp = 02 + vnp/n = vnp/n and msepm = b2 + vpm/n, (3.1)

where b = µ0 − µtrue. The remainder of this section will be used to motivate and obtain

good estimators for the mean squared errors in (3.1) with the class of focus paramters of

the form µ(G;h0) defined in (1.3), and the more general µ(G;h,H) in (1.4).

3.2. Deriving unbiased risk estimates. In the derivation below, the parametric can-

didates Fθ will be fitted using the Whittle estimator θ̂n as defined in (2.4), while we will

use the canonical periodogoram based estimator in (2.5) for nonparametric estimation of

the spectral distribution G.

Using the Whittle estimator in collaboration with (2.5) results in a convenient simplifi-

cation of the derivations below; extending the arguments to full ML estimation is relatively

straightforward, using techniques in Dahlhaus & Wefelmeyer (1996). This motivates the
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following nonparametric and parametric estimators for focus parameters µ(G;h0) on the

form of (1.3):

µ̂np =

∫ π

−π
h0(ω)In(ω) dω =

1

n
yt
n
Σn(h0)yn and µ̂pm =

∫ π

−π
h0(ω)fθ̂n(ω) dω,

where Σn(h0) is a n × n-dimensional symmetric Toeplitz matrix, having elements of the

general form

σn,s,t(h0) =

∫ π

−π
cos(ω|s− t|)h0(ω) dω.

for s, t = 1, . . . , n. The following proposition establishes the joint limit distribution for

the estimators above (suitably normalised), which in turn will be used to obtain good

approximations for their respective mean squared errors.

Proposition 1. Let y1, . . . , yn be realisations from a stationary Gaussian time series

model with spectral density g assumed to be uniformly bounded away from both zero and

infinity. Suppose |h0| is bounded in ω, that fθ is two times differentiable with respect to θ,

and that fθ and these derivatives, ∇fθ and ∇2fθ, are continuous and uniformly bounded

in both ω and θ in a neighbourhood of the least false parameter value θ0 as defined in

(2.2) above. Then(√
n(µ̂np − µtrue)√
n(µ̂pm − µ0)

)
→d

(
X0

ct0J(g, fθ0)
−1U

)
∼ N2

((
0

0

)
,

(
vnp vc

vc vpm

))
, (3.2)

where

vnp = 4π

∫ π

−π
{h0(ω)g(ω)}2 dω and vpm = ct0J(g, fθ0)

−1K(g, fθ0)J(g, fθ0)
−1c0,

with J and K as defined below (2.3), and vc = ct0J(g, fθ0)
−1d0, where the c0 is the partial

derivative of µ(Fθ0 ;h) with respect to θ, i.e. c0 = ∇µ(Fθ0 ;h) =
∫ π
−π h0(ω)∇fθ0(ω) dω and

d0 = cov(X,U) =

∫ π

−π

∇fθ0(ω)h0(ω)g(ω)2

fθ0(ω)2
dω.

Proof. It follows from the results in (Dzhaparidze, 1986, Ch. 2) that θ̂n−θ0 = J(g, fθ0)
−1Un+

op(1/
√
n), where Un = ∇̂̀n(fθ0) and

Un = −1
2
{Tr(Σn(∇Ψθ0))− ytnΣn(∇Ψθ0/fθ0)yn},

where Ψθ0 = log fθ0 and ∇Ψθ0 is the vector of its partial derivatives. As a conse-

quence, a Taylor expansion motivated by the standard delta method gives µ̂pm − µ0 =

ct0J(g, fθ0)
−1Un + op(1/

√
n). Since

√
nUn →d U by the assumptions of the proposition

(Dzhaparidze, 1986), the parametric part of the result holds. In addition

Xn = (µ̂np − µtrue) =
1

n
yt
n
Σn(h0)yn − µtrue,
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which can be shown, by a modified version of the argument leading to the limit distribution

of Un, to have the property that
√
nXn →d X0 ∼ N(0, vnp). This proves the nonparametric

part of the result. We finally need to show that these convergence results hold jointly.

Since the two drivers in the derivation of the limit distribution, yt
n
Σn(h0)yn/n and Un,

are quadratic forms, the joint limit distribution is readily obtainable by a Cramér–Wold

type of argument. To see how, let a be a vector in R2 to be used in the Cramér–Wold

argument, and define

Λn = a1
√
nXn + a2

√
nUn =

1√
n
yt
n
Σn(a1h0 + a2∇Ψθ0/fθ0)yn + γn

where γn =
√
n{a1µtrue − a2Tr(Σn(∇Ψθ0))/2}. The γn cancels out the mean, here, such

that Λn has mean zero. This is once again just a quadratic form, hence, Λn is normal

under the assumptions of the proposition; see Dzhaparidze (1986) or Hermansen & Hjort

(2014b) for derivations of a similar type. The proof is completed by observing that by

Dahlhaus & Wefelmeyer (1996, Lemma A.5), the covariances take the relevant form

cov(Xn, Un) =
2

n
Tr{Σn(h0)Σn(g)Σn(∇Ψθ/fθ)Σn(g)} →

∫ π

−π

∇fθ0(ω)h0(ω)g(ω)2

fθ0(ω)2
dω.

�

We next extend the above proposition to the more general class of We next extend

the above proposition to the more general class of focus parameters µ(G;h,H) in (1.4),

being a continuously differentiable function of a finite number of the µ(G;h0) functions.

The nonparametric and parametric estimators for this class take the form

µ̂np = H
(
n−1yt

n
Σn(h1)yn, . . . , n

−1yt
n
Σn(hk)yn

)
and

µ̂pm = H
(∫ π

−π
h1(ω)f(ω; θ̂n) dω, . . . ,

∫ π

−π
hk(ω)f(ω; θ̂n) dω

)
.

Proposition 2. Under the conditions of Proposition 1 the focus parameters µ(G;h,H)

in (1.4), with estimators and estimands as above, fulfils(√
n(µ̂np − µtrue)√
n(µ̂pm − µ0)

)
→d

(
∇HnpX

∇Hpmc
tJ(g, fθ0)

−1U

)
∼ N2

((
0

0

)
,

(
vnp vc

vc vpm

))
, (3.3)

where

vnp = ∇Hnp{4π
∫ π

−π
{h(ω)g(ω)}2 dω}∇Ht

np and

vpm = ∇Hpmc
tJ(g, fθ0)

−1K(g, fθ0)J(g, fθ0)
−1c∇Ht

pm,

and vc = ∇Hpmc
tJ(g, fθ0)

−1d∇Ht
np, where ∇Hnp and ∇Hpm are the gradients of H

evaluated at respectively (µ(G;h1), . . . , µ(G;hk)) and (µ(Fθ0 ;h1), . . . , µ(Fθ0 ;hk)), c is the
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k × p-dimensional matrix with rows given by ∇µ(Fθ0 ;hj), j = 1, . . . , k and

d = cov(X,U) =

∫ π

−π

∇fθ0(ω)h(ω)g(ω)2

fθ0(ω)2
dω.

Proof. By Propostion 1, we see that (3.2) holds for each µ(G;hj). Let now Xn,j =
1
n
yt
n
Σn(hj)yn − µtrue for j = 1, . . . , k. By extending the Cramér–Wold argument in Pro-

postion 1 to all of Xn,1, . . . , Xn,k, Un, we see that there is joint convergence for all these.

The standard (multivariate) delta method then completes the proof. �

Remark 1. From the underlying structure of the proof of Propositions 1 and 2, and

the arguments (of e.g. Dahlhaus & Wefelmeyer (1996) or Dzhaparidze (1986)) used to

show that the Whittle estimator has the same large-sample properties as the maximum

likelihood estimator, it is clear that the conclusions of the two propositions stays true if

we replace Whittle with full maximum likelihood estimation.

The nonparametric estimator is by construction unbiased in the limit; an estimate for

the risk is therefore easily obtained from the variance formula above. For the parametric

candidate, we need in addition an unbiased estimate for the squared bias. Following

Jullum & Hjort (2015) we start with b̂ = µ̂pm − µ̂np as an initial estimate for b = µ0 −
µtrue. Since it follows from (3.2) that

√
n(̂b − b) →d ctJ−1U − X ∼ N(0, κ), where

κ = vpm + vnp − 2vc, we have E b̂2 ≈ b2 + κ/n + o(1/n). This leads to mse estimators of

the form

FICnp = m̂senp = v̂np/n,

FICpm = m̂sepm = b̂sq + v̂pm/n = max(0, b̂2 − κ̂/n) + v̂pm/n.
(3.4)

For the most general focus parameter formulation in (1.4), the variance and covariance

estimators take the form

v̂np = ∇Ĥnp{2π
∫ π

−π
h(ω)2In(ω)2 dω}∇Ĥt

np, and

v̂pm = ∇Ĥpmĉ
tJ(In, fθ̂n)−1K(In/

√
2, fθ̂n)J(In, fθ̂n)−1ĉ ∇Ĥpm,

where ĉ = (∇µ(Fθ̂n ;hk), . . . ,∇µ(Fθ̂n ;hk))
t, ∇Ĥnp and ∇Ĥpm are the gradients of H evalu-

ated at respectively (µ(Ĝn;h1), . . . , µ(Ĝn;hk)) and (µ(Fθ̂n ;h1), . . . , µ(Fθ̂n ;hk)), and J and

K are as defined in relation to (2.3) – using In(w)2/2 as the canonical nonparametric

unbiased estimator for g(w)2. These are all consistent according to Taniguchi (1980); Deo

& Chen (2000).

With FIC scores as above, representing clear-cut estimates of the risk of the nonpara-

metric and parametric models’ estimators of µ, our model selection strategy turns out as

follows: Compute the FIC score for each candidate model, rank them accordingly, and

select the model and estimator associated with the smallest FIC score. The same FICpm



FIC FOR STATIONARY TIME SERIES 12

formula (with different estimates and quantities) is used for all of the possibly m different

parametric candidate models for simultaneous selection among the m+ 1 models. This is

perfectly fine as the FICpm formula does not depend on the other parametric models.

Although we have concentrated on focus functions µ(G;h) and µ(G;h,H) given by

(1.3-1.4), our focused model selection strategy applies also to more general focus parame-

ters, as long as joint limit distributions like (3.2) and (3.3) may be proven. In completely

general terms, our results may be generalised to focus parameters of the form µ = T (G)

for well-behaved functionals T mapping the spectral distribution G to a scalar value. The

type of smoothness required for T is in fact that the functional is so-called Hadamard dif-

ferentiable at G and Fθ0 , see e.g. van der Vaart (2000, Theorem 20.8) for further details.

This allows us, for instance, to handle focus parameters involving quantiles of the spectral

distribution G. It is also possible to extend the arguments to other parametric estima-

tion procedures, especially if they are derived as minimisers of the empirical analogue of

argmin{R(G, θ)} for R the model specific part of possibly different divergence measure

than in (2.2), see Dahlhaus & Wefelmeyer (1996) and Taniguchi (1980) for alternatives.

4. Models with trends

So far we have only considered stationary time series with mean zero. In real appli-

cations, this is often an unrealistic assumption to make. Even if the series is stationary,

the underlying mean is rarely exactly zero; the common solution in such cases is to de-

trend the series. In time series modelling, detrending usually refers to the act of removing

an estimated or deterministic trend from the observed series before the main analysis.

This may be a complex function of time and covariates including seasonal effects, or be

as simple as subtracting the arithmetic mean. A common approach is to work with the

detrended series, which we will denote by ŷt, and then analyse this series using models

for stationary time series, without factoring in the extra estimation uncertainty involved

in the detrending. This is often unproblematic, but even the innocent action of subtract-

ing the mean may have unforeseen consequences (typically for the so-called second order

properties). Hermansen & Hjort (2014b) shows that such a simple operation alter the

underlying motivation and interpretation of the AIC for stationary Gaussian time series.

Thus, special care is required for such an operation.

Suppose the observed series is generated by the model

Yt = m(xt, β) + εt, (4.1)

where the xt are p-dimensional covariates, the m is of known parametric structure, and

{εt} is a zero mean stationary Gaussian time series process with spectral distribution

function G and corresponding density g. Assume further that we are able to estimate β

by a suitable β̂n with reasonable precision. The question is then whether the results of
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Section 3 are still valid also with detrended data, such that we may still use the same FIC

formulae.

Proposition 3. Suppose the spectral densities g and fθ and function h satisfy the

conditions of Proposition 1, and that the assumed trend m and corresponding estimator

β̂ for the unknown β are such that
√
n(β̂n − β) = Op(1). Assume further that in a

neighbourhood of β we have

m(x, β̂n) = m(x, β) +∇m(x, β)t(β̂n − β) + rn(x),

with maxi |rn(xi)| = op(1/
√
n) and |∇m(x, β)| bounded in x. Then the conclusions of

Proposition 1 are still true if we replace yt with the detrended ŷt = yt −m(xt, β̂n).

Proof. We will show that the result follows as a corollary from certain general results

regarding limit behaviour of quadratic forms from Hermansen & Hjort (2014a, Section 3).

The argument is structured similarly to that of Proposition 1 and is built around

a Cramér–Wold type of argument. Observe that if we replace yt with the detrended

ŷt = yt −m(xt, β̂n), we now have X̂n = (ŷt
n
Σn(h0)ŷn − µtrue) and similarly

Ûn = −1
2
{Tr(Σn(∇Ψθ0))− ŷ

t

n
Σn(∇Ψθ0/fθ0)ŷn},

where ŷ
n

= (ŷ1, . . . , ŷn)t. Again, for any a = (a1, a2) in R2, we now have

Λ̂n = a1
√
nX̂n + a2

√
nÛn = ŷt

n
Σn(a1h0 + a2∇Ψθ0/fθ0)ŷn/

√
n+ γn,

with γn as in the proof of Proposition 1. Then, according to Proposition 3.1 of Hermansen

& Hjort (2014a),

Λ̂n − Λn = op(n
−1/2)

where Λn = εtnΣn(a1h0 + a2∇Ψθ0/fθ0)εn/
√
n + γn, where εn = (ε1, . . . , εn)t has elements

corresponding to (4.1). Since the limit behaviour of Λn is what defines the limit distribu-

tion in Proposition 1, the argument is essentially complete. �

The above proposition may also be extended to the focus parameter in (1.4), as

handled in Proposition 2. Traditionally, the least squares estimator has been the canonical

method for estimating β in models of the form of (4.1). As an illustration, consider the

linear regression model with dependent errors where Yt = xttβ + εt, for p-dimensional

covariates xt, and where {εt} is a zero mean stationary Gaussian time series process with

spectral density g. On matrix form this yields y
n

= Xβ + εn, where X is the related

n× p-dimensional design matrix. The ordinary least squares estimate for β is then given

by β̂n = (XtX)−1Xty
n
. Then, in order for β̂n to satisfy the conditions of Proposition

3, it is sufficient that nVar(β̂n) = n(XtX)−1XtΣn(g)X(XtX)−1 = o(1), which is clearly

satisfied if XtX/n →p Q1 and XtΣ(g)X/n →p Q2, as n approaches infinity, where Q1

and Q2 are both finite positive definite matrices. These are the standard assumptions
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needed to ensure consistency of both standard and generalised least squares for models

with correlated errors.

5. Average focused information criterion

We have so far concentrated on inference for a single focus parameter µ. A natural

generalisation of this is to consider several focus parameters joinly, say correlations of

orders 1 to 5. The FIC machinery can easily be lifted to such a situation, involving a

weighted average of FIC scores, the AFIC, with weights reflecting importance dictated by

the statistician.

Suppose in general terms that estimands µ(u) are under consideration, for u in some

index set. For each of these we have the nonparametric µ̂np(u) and one or more parametric

estimators µ̂pm(u). These typically have versions of Propositions 1 or 2, leading as per

(3.1) to

msenp(u) = 02 + vnp(u) and msepm(u) = b(u)2 + vpm(u),

with b(u) = µ0(u)−µtrue(u). These mean squared errors can then be combined, via some

suitable cumulative weight function W (u), to

risknp =

∫
vnp(u) dW (u) and riskpm =

∫
{b(u)2 + vpm(u)} dW (u)

Here dW (·) is meant to reflect the relative importance of the different µ(u), and should

stem from the statistician’s judgement and the actual context. Based on the data we may

now form the following natural estimates of these risk quantities:

AFICnp =

∫
v̂pm(u) dW (u),

AFICpm =

∫ [
max{b̂(u)2 − κ̂(u)/n}+ v̂pm(u)

]
dW (u).

(5.1)

This operation also needs the covariances vc(u), as κ̂(u) is to be constructed as the natural

estimator of κ(u) = vpm(u) + vpm(u)− 2vc(u).

The AFIC scheme (5.1) can be used in a variety of circumstances. A typical appli-

cation may involve assessing models for estimating a threshold probability P{Yn+1 ≥ a}
over a set of many a, again with a weight function w(a) indicating relative importance.

Another attractive application is for the task of estimating correlations corr(h) for lags

h = 1, 2, 3, . . ., perhaps with a decreasing w(h). The AFIC method may similarly be

applied for comparing the popular autorcorrelation function, such as acf in the statisti-

cal software package R (R Core Team, 2015), with potentially more accurate parametric

alternatives.
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6. Performance

In the present section we will discuss some behavioural aspects of the derived FIC

methodology. First we present some theoretical consequences of using our new FIC con-

struction for model selection. Then we discuss some issues related to the more practical

performance of this criterion, and illustrate some of these in a simulation study. The goal

is not to conduct a broad simulation based investigation, but rather show the potential of

having a criterion for selecting among parametric models and a nonparametric alternative

in a simple proof of concept type of illustration.

6.1. FIC under model conditions. Although we have been working outside specific

parametric model conditions when deriving the FIC (and AFIC) above, it is natural to ask

how the criteria selects when a parametric model is indeed correct. Consider however first

the case where a specific parametric candidate model is incorrect and have bias b 6= 0.

From the structure of the FIC formulae in (3.4) and the consistency of the involved

variance and covariance estimators, we see that FICnp = op(1), while FICpm = Op(1) +

op(1) = Op(1). I.e. the squared bias term dominates completely, and the probability that

the FIC will select this particular parametric model will tend to 0 as n → ∞. If all the

parametric candidate models are biased in this sense, then the FIC will eventually prefer

the nonparametric model when the sample size increases.

Going more into detail, it is seen from the FIC formulae in (3.4) that the FIC prefers

a specific parametric model over the nonparametric whenever

max(̂b2 − κ̂/n, 0) + n−1v̂pm ≤ n−1v̂np.

Whenever v̂np ≥ v̂pm, this is seen to be equivalent to

Zn ≤ 2,

where Zn = (nb̂2)/(v̂np − v̂c).
It turns out that under model conditions, we have vc = vpm. This is rather straightfor-

ward to see by investigating the forms of vc and vpm involved in Proposition 2, in addition

to the forms of K0 and J0. Inserting g = fθ0 in these formulae reveals that K0 = J0,

∇Hnp = ∇Hpm and c = d and thereby vc = vpm. Now, due to the consistency, we have

v̂np − v̂c →p vnp − vpm. Further, the limit distribution result of
√
n(̂b − b) given above

(3.4) ensures that Zn →d χ
2
1, with χ2

1 a chi-squared distributed variable with one degree of

freedom. That is, the limiting probability that the parametric model will be selected over

the nonparametric when it is indeed true is P{Zn ≤ 2} → P{χ2
1 ≤ 2} ≈ 0.843. Thus, if

one of the parametric candidate models is correct, and the others have biases b 6= 0, then,

for sufficiently large samples, the first parametric model and estimator will be selected
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with a probability tending to 84.3%, while the nonparametric will be selected in the other

15.7% proportion.
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Figure 6.1. Relative root-mse for each candidate model fitted to the six focus parame-

ters µk = C(k), for k = 0, . . . , 5. The root-mse is computed based on 5000

simulated AR(2) series of length n = 100, with σ = 1.0 and ρ = (0.7,−0.6),

For ease of comparison we have scaled the root-mse to the unit interval.
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Figure 6.2. The five least false covariance functions under the assumption that the true

model is an autoregressive model specified by the parameters σ = 1.0 and

ρ = (0.7,−0.6).
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6.2. FIC in practice. Figure 6.1 shows the relative root-mse for estimating the focus

parameter

µk = µ(G;hk) =

∫ π

−π
cos(ωk)g(ω) dω = Cg(k), for k = 1, . . . , 5, (6.1)

based on the following five candidates models: the independence model (autoregressive of

order zero); the autoregressive of orders one and two; the moving average of order one;

and finally the nonparametric one, where nothing more is assumed than saying that the

series is stationary with a finite variance. The true model is an autoregressive model

specified by the parameters ρ = (0.7,−0.6) and σ = 1.0. This means that all but two, the

autoregressive model of order two and the nonparametric model, are misspecified. The

corresponding least false covariance estimates are plotted in Figure 6.2. In the simulation

study, we have used B = 5000 repetitions of length n = 100 to compute the actual

relative root-mse values for each candidate. Note that since we have included the true

model among our candidates, nonparametric estimation is never the optimal choice; it is

however often close and it is the second best choice for lags 1 and 3. For lags 2 and 5,

where the true values are close to zero, the simpler models, like AR(0) and MA(1), are

highly successful, achieving reasonably low bias and also low variance.

Figure 6.3. The proportion for which the different criteria selects the model with the

theoretical lowest root-mean-squared error. The model-selectors are always

nonparametric, FIC, AIC and BIC. The results are based on 5000 simulated

series.

In Figure 6.3 and 6.4 we further investigate the performance of the FIC. Here, we

compare our FIC machinery with three other model selection strategies, (i) to always use
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the nonparametric model, (ii) select the best parametric model according to the AIC and

(iii) the parametric model selected by the BIC. Note that the AIC and BIC tools do not

work for the nonparametric model, since there is no likelihood function. In Figure 6.3 we

have counted how many times each criterion selects the model that obtains the smallest

root-mse value, for each focus parameter µk as defined in (6.1). Figure 6.4 contains the

corresponding attained root-mse values. Note that for lag 1 the theoretical root-mse for

the autoregressive models are, for all practical purposes, equal to that obtained by the

nonparametric model. In all other cases, the nonparametric model has a root-mse larger

than the optimal model.

In this illustration, the FIC behaves more or less as intended, by selecting (on average)

the models that produces the smallest risk. The amount of evidence is by no means

conclusive, but it indicates that the FIC machinery has a real potential.

Figure 6.4. The relative root-mean-squared (computed in the same simulations) for

the models selected by FIC, AIC and BIC, and by always using the non-

parametric model.

7. Concluding remarks

Here we offer a list of conclucing comments, some pointing to further relevant research.

7.1. Model averaging. The FIC scores may also be used to combine the most promising

estimators into a model averaged estimator, say µ̂∗ =
∑

j c(Mj)µ̂j, with c(Mj) given higher

values for models Mj with higher FIC scores; as discussed in Hjort & Claeskens (2003).
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7.2. The conditional FIC. For time series processes, several interesting and important

focus parameters are naturally related to predictions, are sample size dependent or other-

wise formulated conditional on past observations. The classical example is k-step ahead

predictions. A class of such estimands could take the form

µ(α, γ, y1, . . . , ym) = P{Yn+1 > α and Yn+2 > γ | y1, . . . , ym}

for a suitable choice of α. The dependency on previous data requires a new and ex-

tended modelling framework, which in Hermansen & Hjort (2015, Sections 5 & 6) led to

generalisations and also motivated a conditional focused information criterion (cFIC). In

completing the FIC-framework for selecting among parametric and nonparametric time

series models, such considerations should also be taken into account.

7.3. Linear time series processes. Building on Walker (1964); Hannan (1973); Brillinger

(1975), the main results of Section 3 can be extended to more general types of time se-

ries processes, like the generalised linear processes (cf. Priestley (1981)); also without the

assumption of Gaussian innovation terms.

7.4. Trends and covariates. In the presented work, our focus was on the dependency

structure only. However, the methods and results of our paper may be generalised to

select simultaneously among models with different trends and dependency structures, like

Yt = m(xt, β) + εt, with εt a stationary Gaussian time process. These issues, leading to a

larger repertoire of FIC formulae, will be returned to in later work. Since it is generally

hard to estimate both the trend and dependency structure using a full nonparametric

framework, the two main challenges is to extend the existing work to handle the case

with various parametric candidates for the trend m(xt, β) and both parametric models

and a nonparametric candidate for the dependency, i.e. the spectral distribution (since we

are working under the Gaussian assumption). Alternatively, we may assume that the εt

belongs to an appropriate width family of parametric stationary time series processes, such

as the autoregressive AR, the moving average MA or the mixture ARMA (cf. Brockwell

& Davis (1991)) and instead compare a nonparametric method for estimating the trend

part of the model, perhaps extending this to functions of the type m(t, xi, β), against a

class of parametric alternatives.

7.5. The local large-sample framework. As mentioned in the introduction, Her-

mansen & Hjort (2015) derives FIC for selecting among parametric time series models

using a local asymptotics framework. The parametric candidate models then have spec-

tral densities belonging to a parametric family f(·; θ, γ), with a p-dimensional protected

θ and a q-dimensional open γ. This constitutes a set of 2q potential parametric candidate

models. The full (or wide) model is represented by the spectral density f(·; θ, γ). At the

other end of the spectrum, the narrow model corresponds to fixating γ = γ0, a known
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value, with the resulting f(·; θ) = f(·; θ, γ0). The local misspecification framework then

assumes that the true spectral density takes the form f(·; θ0, γ0 + δ/
√
n), for some un-

known q-dimensional δ describing the distance to the wide model. This framework causes

variances and squared biases to become of the same order of magnitude O(1/n). Those

lead to approximation formulae for the mean squared error and FIC formulae for nested

parametric models, which are different from those obtained in this paper.

The introduction of the ‘asymptotically correct’ nonparametric model of the present

paper allowed us to derive FIC formulae even when sidestepping the above local misspeci-

fication assumption. An alternative approach is to retain the local asymptotics framework

and work with spectral densities of the type fr(ω) = fθ0(ω) + r(ω)/
√
n, where fθ0 is a

standard type of parametric model. Such structures have already been worked with in

Dzhaparidze (1986), making the extension potentially less cumbersome. This will not be

dealt with here, however.
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