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Abstract
Shapley values originated in cooperative game theory but are extensively used today
as a model-agnostic explanation framework to explain predictions made by complex
machine learning models in the industry and academia. There are several algorith-
mic approaches for computing different versions of Shapley value explanations. Here,
we consider Shapley values incorporating feature dependencies, referred to as condi-
tional Shapley values, for predictive models fitted to tabular data. Estimating precise
conditional Shapley values is difficult as they require the estimation of non-trivial
conditional expectations. In this article, we develop new methods, extend earlier pro-
posed approaches, and systematize the new refined and existing methods into different
method classes for comparison and evaluation. The method classes use either Monte
Carlo integration or regression to model the conditional expectations. We conduct
extensive simulation studies to evaluate how precisely the different method classes
estimate the conditional expectations, and thereby the conditional Shapley values, for
different setups.We also apply the methods to several real-world data experiments and
provide recommendations forwhen to use the differentmethod classes and approaches.
Roughly speaking, we recommend using parametric methods when we can specify the
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data distribution almost correctly, as they generally produce the most accurate Shapley
value explanations. When the distribution is unknown, both generative methods and
regression models with a similar form as the underlying predictive model are good
and stable options. Regression-based methods are often slow to train but quickly pro-
duce the Shapley value explanations once trained. The vice versa is true for Monte
Carlo-based methods, making the different methods appropriate in different practical
situations.

Keywords Explainable artificial intelligence · Shapley values · Model-agnostic
explanation · Prediction explanation · Feature dependence · Feature importance

1 Introduction

Complex machine learning (ML) models are extensively applied to solve supervised
learning problems in many different fields and settings: cancer prognosis (Kourou
et al. 2015), credit scoring (Kvamme et al. 2018), impact sensitivity of energetic
crystals (Lansford et al. 2022), and money laundering detection (Jullum et al. 2020).
The ML methods are often very complex, containing thousands, millions, or even
billions of tuneable model parameters. Thus, understanding the complete underlying
decision-making process of the ML algorithms is infeasible (for us humans). The
use of ML methods is based on them having the potential to generate more accurate
predictions than established statistical models, but this may come at the expense of
model interpretability, as discussed by Johansson et al. (2011), Guo et al. (2019), Luo
et al. (2019). Rudin (2019) conjectures that equally accurate but interpretable models
exist across domains even though they might be hard to find.

The lack of understanding of how the input features of the ML model influence
the model’s output is a major drawback. Hence, to remedy the absence of interpreta-
tion, the fields of explainable artificial intelligence (XAI) and interpretable machine
learning (IML) have become active research fields in recent years (Adadi and Berrada
2018; Molnar 2022; Covert et al. 2021). Various explanation frameworks have been
developed to extract hidden knowledge about the underlying data structure captured by
the black-box model, making the model’s decision-making process more transparent.
Model transparency is essential for, e.g., medical researchers who apply an intricate
ML model to obtain well-performing predictions but who simultaneously also aim to
discover important risk factors. The Right to Explanation legislation in the European
Union’s General Data Protection Regulation (GDPR) has also been a driving factor
(European Commission 2016).

One of the most commonly used explanation frameworks in XAI is Shapely val-
ues, which is an explanation methodology with a strong mathematical foundation and
unique theoretical properties from cooperative game theory (Shapley 1953). Shapley
values are most commonly used as a model-agnostic explanation framework for indi-
vidual predictions, that is, for local explanations. Model-agnostic means that Shapley
values do not rely on model internals and can be used to compare and explain any ML
model trained on the same supervised learning problem. Local explanation means that
Shapley values explain the local model behavior for a specific observation and not the
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global model behavior across all observations. The methodology has also been used
to provide global explanations, see, e.g., Owen (2014), Covert et al. (2020), Frye et al.
(2021), Giudici and Raffinetti (2021). SeeMolnar (2022) for an overview and detailed
introduction to other explanation frameworks.

Shapley values originated in cooperative game theory but have been reintroduced as
a model explanation framework by Strumbelj and Kononenko (2010), Strumbelj and
Kononenko (2014), Lundberg and Lee (2017). Originally, Shapley values described a
possible solution concept of how to fairly allocate a game’s payout among the players
based on their contribution to the overall cooperation/payout. The solution concept is
basedon several desirable axioms, forwhich theShapleyvalues are the unique solution.
When applying Shapley values as an explanation framework, we treat the features as
the players, the predictive model as the game, and the corresponding prediction as the
payout.

There are several ways to define the game, which yields different types of Shap-
ley values. For local explanations, the two main types are marginal and conditional
Shapley values1, and there is an ongoing debate about when to use them (Chen et al.
2020; Kumar et al. 2020; Chen et al. 2022). Briefly stated, themarginal version ignores
dependencies between the features, while the conditional version incorporates them.
Thus, a disadvantage of the conditional Shapley values, compared to the marginal
counterpart, is that they require the estimation/modeling of non-trivial conditional
expectations. However, they are robust against adversarial attacks, which the marginal
Shapley values are not (Blesch et al. 2023). Throughout this article, we refer to con-
ditional Shapley values when discussing Shapley values if not otherwise specified.

There is a vast amount of literature on different approaches for estimating Shap-
ley values (Strumbelj et al. 2009; Lundberg and Lee 2017; Lundberg et al. 2018;
Redelmeier et al. 2020; Williamson and Feng 2020; Aas et al. 2021a, b; Frye et al.
2021; Covert et al. 2021; Olsen et al. 2022). These methods can be grouped into dif-
ferent method classes based on their characteristics, that is, if they (implicitly) assume
feature independence or use empirical estimates, parametric assumptions, generative
methods, and/or regression models; see Fig. 1. To the best of our knowledge, there
exists no thorough and methodological comparison between all the method classes
and approaches. Chen et al. (2022, Sect. 6) states that “[conditional Shapley values]
constitutes an important future research direction that would benefit fromnewmethods
or systematic evaluations of existing approaches”.

In this article, we both investigate existing methods, introduce several new
approaches, and conduct extensive simulation studies starting from a very simple
set-up with an interpretable model as a sanity check and gradually increase the com-
plexity of the predictive model. We also investigate the effects the data distribution,
with varying levels of dependence, and the training sample size have on the estimation
of the conditional expectations using the different methods. Finally, we also conduct
experiments on real-world data sets from the UCI Machine Learning Repository. In
the numerical simulation studies, the parametric methods, which correctly (or nearly
correctly) assume the data distribution, generate the most accurate Shapley values.
However, if the data distribution is unknown, such as for most real-world data sets,

1 They are also called interventional and observational Shapley values, respectively.
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Fig. 1 Schematic overview of the paradigms, method classes, and methods/ approaches used in this article
to compute conditional Shapley value explanations

our experiments show that using either a generative method or a regression model
with the same form as the predictive model is the best option. In addition to accuracy,
we also investigate the computation times of the methods. Based on our findings, we
present recommendations forwhen to use the differentmethod classes and approaches.

In Sect. 2, we give an overview of Shapley values’ origin and their use as a model-
agnostic explanation framework. The existing and novel methods for estimating the
Shapley value explanations are described in Sect. 3. In Sect. 4, we present the sim-
ulation studies and discuss the corresponding results. We conduct experiments on
real-world data sets in Sect. 5. Recommendations for when to use the different meth-
ods and a conclusion are given in Sects. 6 and 7, respectively. In the Appendix, we
provide implementation details and more information about some of the methods. We
provide additional methods and simulation studies in the Supplement.

2 Shapley values

In this section, we first briefly describe Shapley values in cooperative game theory
before we elaborate on their use in model explanation.

2.1 Shapley values in cooperative game theory

Shapley values are a solution concept of how to divide the payout of a cooperative
game v : P(M) �→ R based on four axioms (Shapley 1953). The game is played by
M players where M = {1, 2, . . . , M} denotes the set of all players and P(M) is the
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power set, that is, the set of all subsets ofM. We call v(S) the contribution function2,
and it maps a subset of players S ∈ P(M), also called a coalition, to a real number
representing their contribution in the game v. The Shapley valuesφ j = φ j (v) assigned
to each player j , for j = 1, . . . , M , uniquely satisfy the following properties:

Efficiency: They sum to the value of the grand coalitionM over the empty set ∅,
that is,

∑M
j=1 φ j = v(M) − v(∅).

Symmetry: Two equally contributing players j and k, that is,
v(S ∪ { j}) = v(S ∪ {k}) for all S, receive equal payouts φ j = φk .
Dummy: A non-contributing player j , that is, v(S) = v(S∪{ j}) for allS, receives
φ j = 0.
Linearity: A linear combination of n games {v1, . . . , vn}, that is, v(S) =∑n

k=1 ckvk(S), has Shapley values given by φ j (v) = ∑n
k=1 ckφ j (vk).

Shapley (1953) showed that the values φ j which satisfy these axioms are given by

φ j =
∑

S∈P(M\{ j})

|S|!(M − |S| − 1)!
M ! (v(S ∪ { j}) − v(S)) , (1)

where |S| is the number of players in coalition S. The number of terms in (1) is
2M . Hence, the complexity grows exponentially with the number of players M . Each
Shapley value is a weighted average of the player’s marginal contribution to each
coalition S.

2.2 Shapley values in model explanation

We consider the setting of supervised learning where we aim to explain a predictive
model f (x) trained on X = {x[i], y[i]}Ntrain

i=1 , where x[i] is an M-dimensional feature
vector, y[i] is a univariate response, and Ntrain is the number of training observations.
The prediction ŷ = f (x), for a specific feature vector x = x∗, is explained using
Shapley values as amodel-agnostic explanation framework (Strumbelj andKononenko
2010, 2014; Lundberg and Lee 2017). The fairness aspect of Shapley values in the
model explanation setting is discussed in, for example, Chen et al. (2020), Fryer et al.
(2021), Aas et al. (2021a).

In the Shapley value framework, the predictive model f (indirectly) replaces the
cooperative game, and the M-dimensional feature vector replaces the M players.
The Shapley value φ j describes the importance of the j th feature in the prediction
f (x∗) = φ0 + ∑M

j=1 φ∗
j , where φ0 = E [ f (x)]. That is, the sum of the Shapley

values explains the difference between the prediction f (x∗) and the global average
prediction.

To calculate (1), we need to define an appropriate contribution function v(S) =
v(S, x∗)which should resemble the value of f (x∗)when only the features in coalition
S are known.We use the contribution function proposed by Lundberg and Lee (2017),
namely the expected response of f (x) conditioned on the features in S taking on the

2 The v(S) is also called the reward function and characteristic function in the literature.
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values x∗
S . That is,

v(S) = E
[
f (x)|xS = x∗

S
]

= E
[
f (xS , xS)|xS = x∗

S
]

=
∫

f (xS , x∗
S)p(xS |xS = x∗

S) dxS ,

(2)

where xS = {x j : j ∈ S} denotes the features in subset S, xS = {x j : j ∈ S} denotes
the features outside S, that is, S = M\S, and p(xS |xS = x∗

S) is the conditional
density of xS given xS = x∗

S . The conditional expectation summarizes the whole
probability distribution, it is the most common estimator in prediction applications,
and it is also the minimizer of the commonly used squared error loss function (Aas
et al. 2021a). Note that the last equality of (2) only holds for continuous features. If
there are any discrete or categorical features, the integral should be replaced by sums
for these features. Hence, p(xS |xS = x∗

S) is then no longer continuous.
The contribution function in (2) is also used by, for example, Covert et al. (2020),

Aas et al. (2021a), Aas et al. (2021b), Frye et al. (2021), Olsen et al. (2022). Covert
et al. (2021) argue that the conditional approach in (2) is the only approach that is
consistent with standard probability axioms. Computing (2) is not straightforward for
a general data distribution and model. Assuming independent features, or having f
be linear, simplifies the computations (Lundberg and Lee 2017; Aas et al. 2021a), but
these assumptions do not hold in general.

To compute the Shapley values in (1), we need to compute the contribution function
v(s) in (2) for all S ∈ P(M), except for the edge cases S ∈ {∅,M}. For S = M,
we have that xS = x∗ and v(M) = f (x∗) by definition. For S = ∅, we have
by definition that φ0 = v(∅) = E[ f (x)], where the average training response is a
commonly used estimate (Aas et al. 2021a). We denote the non-trivial coalitions by
P∗(M) = P(M)\{∅,M}. The Shapley values φ∗ = {φ∗

j }Mj=0 for the prediction
f (x∗) are computed as the solution of a weighted least squares problem (Charnes
et al. 1988; Lundberg and Lee 2017; Aas et al. 2021a). We refer to Molnar (2023) for
an extensive introduction to the Shapley value explanation framework.

In Sects. 2.2.1 and 2.2.2, we describe two prominent paradigms for estimating the
contribution function v(S) for all S ∈ P∗(M), namely, Monte Carlo integration and
regression.

2.2.1 Monte Carlo integration

Oneway to estimate the contribution function v(S) is by usingMonteCarlo integration
(Lundberg and Lee 2017; Aas et al. 2021a). That is,

v(S) = v(S, x∗) = E
[
f (xS , xS)|xS = x∗

S
] ≈ 1

K

K∑

k=1

f (x(k)
S , x∗

S) = v̂(S), (3)
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where f is the predictive model, x(k)
S ∼ p(xS |xS = x∗

S), for k = 1, 2, . . . , K , and
K is the number of Monte Carlo samples. We insert v̂(S) into (1) to estimate the
Shapley values. To obtain accurate conditional Shapley values, we need to generate
Monte Carlo samples that follow the true conditional distribution of the data. This
distribution is generally not known and needs to be estimated based on the training
data. In Sects. 3.1, 3.2, 3.3, and 3.4, we describe differentmethod classes for generating
the conditional samples x(k)

S ∼ p(xS |xS = x∗
S).

2.2.2 Regression

As stated above, the conditional expectation (2) is the minimizer of the mean squared
error loss function. That is,

v(S) = v(S, x∗) = E
[
f (xS , xS)|xS = x∗

S
]

= argminc E
[
( f (xS , xS) − c)2|xS = x∗

S
]
.

(4)

Thus, any regression model gS(xS), which is fitted with the mean squared error
loss function as the objective function, will approximate (4), obtaining an alternative
estimator v̂(S) (Aas et al. 2021a; Frye et al. 2021; Williamson and Feng 2020). The
accuracy of the approximation will depend on the form of the predictive model f (x),
the flexibility of the regression model gS(xS), and the optimization routine. We can
either train a separate regression model gS(xS) for each S ∈ P∗(M) or we can train
a single regression model g(x̃S) which approximates the contribution function v(S)

for all S ∈ P∗(M) simultaneously. Here x̃S is an augmented version of xS with
fixed-length M , where the augmented values are mask values to be explained later.
We elaborate on the notation and details of these two regression methodologies in
Sects. 3.5 and 3.6, respectively.

2.2.3 Approximation strategies

In general, computing Shapley values is an NP-hard problem (Deng and Papadim-
itriou 1994; Faigle and Kern 1992), and the complexity of the direct computation of
(1) is exponential in the number of features M . In this section, we highlight strategies
using approximations or model assumptions to reduce the Shapley value explanation
framework’s computational complexity and make it tractable in higher dimensions.
However, this paper’s primary consideration is to accurately compare methods for
estimating v(S), but using an approximation strategy will introduce additional uncer-
tainty in the explanations. Thus, we consider relatively low-dimensional settings in
the experiments in Sects. 4 and 5, where the exact computation of the Shapley value
formula in (1) is feasible. The approximate speed-up strategies can be divided into
model-agnostic and model-specific strategies (Chen et al. 2022).

The model-agnostic strategies put no assumptions on the predictive model f and
often use stochastic sampling-based estimators (Aas et al. 2021a; Lundberg and Lee
2017; Okhrati and Lipani 2021; Mitchell et al. 2022). That is, to speed up the compu-
tations, they approximate the Shapley value explanations by a sampled subset of the
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coalitions instead of considering the exponential amount of them. Thus, the strategies
are stochastic; however, their expectations are unbiased. One of the most common
model-agnostic strategies is the KernelSHAP strategy introduced in Lundberg and
Lee (2017) and improved by Covert and Lee (2021). In the KernelSHAP strategy,
we sample, e.g., NS = 2000 < 2M coalitions and use only these coalitions to approx-
imate the Shapley value explanations. This strategy enables us to approximate the
explanations in tractable time even for large values of M ; however, a NS 
 2M will
(likely) produce poor approximations.

Themodel-specific strategies put assumptions on the predictivemodel f to improve
the computational cost, but some of the strategies are restricted to marginal Shapley
values. For conditional Shapley values, Aas et al. (2021a), Chen et al. (2020) derive
explicit expressions for linear models to speed up the computations, and Lundberg
et al. (2020) proposes the path-dependentTreeSHAP algorithm for tree-basedmodels.
There are speed-up strategies for deep neural network models, too, but they are limited
to marginal Shapley values (Ancona et al. 2019; Wang et al. 2020).

For more details about the model-agnostic and model-specific strategies, we refer
to Chen et al. (2022, Sect. 5.2), which provides an excellent introduction to both
strategies. Jethani et al. (2021) proposes another strategy called FastSHAP, which
sidesteps the Shapley value formula by training a black-box neural network to directly
output the Shapley value explanations. Another strategy for reducing the computations
is to explain groups of similar/correlated features instead of individual features (Jullum
et al. 2021).

3 Conditional expectation estimation

Computing conditional Shapley values is difficult due to the complexity of estimat-
ing the conditional distributions, which are not directly available from the training
data. In this section, we give a methodological introduction to different methods
for estimating the conditional expectation in (2) via either Monte Carlo integra-
tion or regression, while we provide implementation details in Appendix A. We
organize the methods into six method classes in accordance with those described
in Chen et al. (2022, Sect. 5.1.3) and Covert et al. (2021, Sect. 8.2). The method
classes we consider are called; independence, empirical, parametric,
generative, separate regression, and surrogate regression, and
they are described in Sects. 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, respectively. The first four
classes estimate the conditional expectation in (2) usingMonteCarlo integration,while
the last two classes use regression.

3.1 The independencemethod

Lundberg and Lee (2017) avoided estimating the complex conditional distributions
by implicitly assuming feature independence. In the independence approach, the
conditional distribution p(xS |xS) simplifies to p(xS), and the corresponding Shapley
values are the marginal Shapley values discussed in Sect. 1. The Monte Carlo samples
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x(k)
S ∼ p(xS) are generated by randomly sampling observations from the training

data; thus, no modeling is needed and x(k)
S follows the assumed true data distribu-

tion. However, for dependent features, which is common in observational studies, the
independence approach produces biased estimates of the contribution function (2)
and the conditional Shapley values. Thus, the independence approach can lead to
incorrect conditional Shapley value explanations for real-world data (Aas et al. 2021a;
Merrick and Taly 2020; Frye et al. 2021; Olsen et al. 2022).

3.2 The empirical method

Instead of sampling randomly from the training data, the empirical method sam-
ples only from similar observations in the training data. The optimal procedure is to
use only samples that perfectly match the feature values x∗

S , as this approach exactly
estimates the conditional expectationwhen the number ofmatching observations tends
to infinity (Chen et al. 2022). However, this is not applicable in practice, as data sets
can have few observations, contain a high number of features to match, or have con-
tinuous features where an exact match is very unlikely. A natural extension is to relax
the perfect match criterion and allow for similar observations (Mase et al. 2019; Sun-
dararajan and Najmi 2020; Aas et al. 2021a). However, this procedure will also be
influenced by the curse of dimensionality as conditioning on many features can yield
few similar observations and thereby inaccurate estimates of the conditional expecta-
tion (2). We can relax the similarity criterion and include less similar observations, but
then we break the feature dependencies. The empirical approach coincides with
the independence approach when the similarity measure defines all observations
in the training data as similar.

We use the empirical approach described in Aas et al. (2021a). The approach
uses a scaled version of the Mahalanobis distance to calculate a distance DS(x∗, x[i])
between the observation being explained x∗ and every training instance x[i]. Then they
use aGaussian distribution kernel to convert the distance into aweightwS (x∗, x[i]) for
a given bandwidth parameter σ . All the weights are sorted in increasing order with x{k}
having the kth largest value. Finally, they approximate (2) by aweighted version of (3),
namely, v̂(S) = ∑K ∗

k=1[wS(x∗, x{k}) f (x{k}
S , x∗

S)]/∑K ∗
k=1 wS(x∗, x{k}). The number

of samples used is K ∗ = minL∈N
{∑L

k=1 wS(x∗, x{k})
/∑Ntrain

i=1 wS(x∗, x[i]) > η
}
,

that is, the ratio between the sum of the K ∗ largest weights and the sum of all weights
must be at least η, for instance, 0.95.

Note that as Aas et al. (2021a) use the Mahalanobis distance, their approach is
limited to continuous features. One could potentially extend their method by using a
distance measure that supports mixed data, for example, the Gower’s distance (Gower
1971; Podani 1999). Another solution is to use, for example, encodings like one-hot-
encoding or entity embeddings to represent the categorical variables as numerical
(Guo and Berkhahn 2016), although that would increase the computational demand
due to increased dimension.
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3.3 The parametric method class

In the parametricmethod class, wemake a parametric assumption about the distri-
butionof the data. This simplifies the process of generating the conditionalMonteCarlo
samples x(k)

S ∼ p(xS |xS = x∗
S). The idea is to assume a distribution whose condi-

tional distributions have closed-form solutions or are otherwise easily obtainable after
estimating the parameters of the full joint distribution. The parametric approaches
can yield very accurate representations if the data truly follows the assumed distribu-
tion, but they may impose a large bias for incorrect parametric assumptions. In this
section, we discuss two previously proposed parametric approaches and introduce
two new methods. The current parametric approaches do not support categorical
features, which is a major drawback, but one can potentially use the same type of
encodings or entity embeddings of the categorical variables as for the empirical
method.

3.3.1 Gaussian

Both Chen et al. (2020), Aas et al. (2021a) assume that the observations are multivari-
ate Gaussian distributed with mean μ and covariance matrix �. That is, p(x) =
p(xS , xS) = NM (μ,�), where μ = [μS ,μS ]T and � =

[
�SS �SS
�SS �SS

]
. The

conditional distribution is also multivariate Gaussian, that is, p(xS |xS = x∗
S) =

N|S|(μS|S ,�S|S), where μS|S = μS + �SS�−1
SS(x∗

S − μS) and �S|S = �SS −
�SS�−1

SS�SS . The parameters μ and � are easily estimated using the sample mean
and covariance matrix of the training data, respectively. In the Gaussian approach,
we sample the conditional samples x(k)

S from p(xS |xS = x∗
S), for k = 1, 2, . . . , K

and S ∈ P∗(M), and use them in (3) to estimate the Shapley values in (1).

3.3.2 Gaussian copula

Aas et al. (2021a) also proposed an alternative approach if the features are far from
multivariate Gaussian distributed, namely the (Gaussian) copula approach. The idea
is to represent the marginals of the features by their empirical distributions and then
model the dependence structure by aGaussian copula. SeeAppendixB.1 for additional
information about copulas.

Assuming a Gaussian copula, Aas et al. (2021a) use the following procedure to
generate the K conditional Monte Carlo samples x(k)

S ∼ p(xS |xS = x∗
S):

1. Convert each marginal x j of the feature distribution x to a Gaussian feature v j by
v j = �−1(F̂(x j )), where F̂(x j ) is the empirical distribution function ofmarginal
j .

2. Assume that v is distributed according to a multivariate Gaussian (the quality
of this assumption will depend on how close the Gaussian copula is to the true
copula), and sample from the conditional distribution p(vS |vS = v∗

S) using the
method described in Sect. 3.3.1.
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3. Convert the margins v j in the conditional distribution to the original distribution
using x̂ j = F̂−1

j (�(v j )).

3.3.3 Burr and generalized hyperbolic

The multivariate Gaussian distribution is probably the most well-known multivariate
distribution with closed-form expressions for the conditional distributions. How-
ever, any other distribution with easily obtainable conditional distributions is also
applicable, for example, the multivariate Burr distribution (Takahasi 1965; Yari and
Jafari 2006) and the multivariate generalized hyperbolic (GH) distribution (Barndorff-
Nielsen 1977; McNeil et al. 2015; Browne and McNicholas 2015; Wei et al. 2019).
We call these two approaches for Burr and GH, respectively. In contrast to the Gaus-
sian distribution, whose parameters can easily be estimated by the sample means and
covariance matrix, the parameters of the Burr and GH distributions are more cumber-
some to estimate. We describe the distributions in more detail in Appendix B. The
GH distribution is unbounded and can model any continuous data set, while the Burr
distribution is strictly positive and is therefore limited to positive data sets. The GH
distribution is related to the Gaussian distribution through the t-distribution, where
the latter is a special case of the GH distribution and coincides with the Gaussian
distribution when the degree of freedom tends to infinity.

3.4 The generative method class

The generative and parametric methods are similar in that they both gener-
ate Monte Carlo samples from the estimated conditional distributions. However, the
generative methods do not make a parametric assumption about the data. We
consider two generative approaches: the ctree approach of Redelmeier et al.
(2020) and the VAEAC approach of Olsen et al. (2022). The latter is an extension of
the approach suggested by Frye et al. (2021). Both methods support mixed data, i.e.,
both continuous and categorical data.

3.4.1 Ctree

Redelmeier et al. (2020) compute conditional Shapley values by modeling the depen-
dence structure between the features with conditional inference trees (ctree). A
ctree is a type of recursive partitioning algorithm that builds trees recursively by
making binary splits on features until a stopping criterion is satisfied (Hothorn et al.
2006). The process is sequential, where the splitting feature is chosen first using statis-
tical significance tests, and then the splitting point is chosen using any type of splitting
criterion. The ctree algorithm is independent of the dimension of the response,
which in our case is xS , while the input features are xS , which varies in dimension
based on the coalition S. That is, for each coalition S ∈ P∗(M), a ctree with
xS as the features and xS as the response is fitted to the training data. For a given
x∗
S , the ctree approach finds the corresponding leaf node and samples K obser-

vations with replacement from the xS part of the training observations in the same
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node to generate the conditional Monte Carlo samples x(k)
S ∼ p(xS |xS = x∗

S). We
get duplicated Monte Carlo samples when K is larger than the number of samples
in the leaf node. Thus, the ctree method weighs the Monte Carlo samples based
on their sampling frequencies to bypass redundant calls to f . Therefore, the con-
tribution function v(S) is not estimated by (3) but rather by the weighted average
v̂(S) = ∑K ∗

k=1 wk f (x
(k)
S , x∗

S)
/∑K ∗

k=1 wk , where K ∗ is the number of unique Monte
Carlo samples. For more details, see Redelmeier et al. (2020, Sect. 3).

3.4.2 VAEAC

Olsen et al. (2022) use a type of variational autoencoder called VAEAC (Ivanov et al.
2019) to generate the conditional Monte Carlo samples. Briefly stated, the original
variational autoencoder (Kingma and Welling 2014, 2019; Rezende et al. 2014) gives
a probabilistic representation of the true unknown distribution p(x). The VAEAC
model extends this methodology to all conditional distributions p(xS |xS = x∗

S)

simultaneously. That is, a single VAEAC model can generate Monte Carlo samples
x(k)
S ∼ p(xS |xS = x∗

S) for all coalitions S ∈ P∗(M). It is advantageous to only
have to fit a single model for all coalitions, as in higher dimensions, the number of
coalitions is 2M − 2. That is, the number of coalitions increases exponentially with
the number of features. In contrast, ctree trains 2M − 2 different models, which
eventually becomes computationally intractable for large M . The VAEAC model is
trained by maximizing a variational lower bound, which conceptually corresponds to
artificially masking features, and then trying to reproduce them using a probabilistic
representation. In deployment, theVAEACmethodconsiders the unconditional features
xS as masked features to be imputed.

3.5 The separate regressionmethod class

The next two method classes use regression instead of Monte Carlo integration to
estimate the conditional expectation in (2). In the separate regression meth-
ods, we train a new regression model gS(xS) to estimate the conditional expectation
for each coalition of features. Related ideas have been explored by Lipovetsky and
Conklin (2001), Strumbelj et al. (2009), Williamson and Feng (2020). However, to
the best of our knowledge, we are the first to compare different regression models for
estimating the conditional expectation as the contribution function v(S) in the local
Shapley value explanation framework.

The idea is to estimate v(S) = E
[
f (x)|xS = x∗

S
] = E

[
f (xS , xS)|xS = x∗

S
]

separately for each coalitionS using regression.As inSect. 2.2, letX = {x[i], y[i]}Ntrain
i=1

denote the training data, where x[i] is the i th M-dimensional input and y[i] is the
associated response. For each S ∈ P∗(M), the corresponding training data set is

XS = {x[i]
S , f (x[i]

S , x[i]
S

︸ ︷︷ ︸
x[i]

)}Ntrain
i=1 = {x[i]

S , f (x[i])
︸ ︷︷ ︸

z[i]

}Ntrain
i=1 = {x[i]

S , z[i]}Ntrain
i=1 .
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For each data set XS , we train a regression model gS(xS) with respect to the
mean squared error loss function. The optimal regression model, with respect to the
loss function, is g†S(xS) = E[z|xS ] = E[ f (xS , xS)|xS ], which corresponds to the

contribution function v(S). The regression model gS aims for the optimal g†S . Hence,
gS resembles/estimates the contribution function, that is, gS(xS) = v̂(S) ≈ v(S) =
E[ f (xS , xS)|xS = x∗

S ].
Awide variety of regressionmodelsminimize theMSE, andwe describe a selection

of them in Sects. 3.5.1, 3.5.2, 3.5.3, 3.5.4, and 3.5.5. The selection discussed below
consists of classical regression models and those that generally perform well for many
experiments.

3.5.1 Linear regression model

The simplest regression model we consider is the linear regression model. It takes
the form gS(xS) = βS,0 + ∑

j∈S βS, j x j = xTSβS , where the coefficients βS are

estimated by the least squares solution, that is, β̂S = argminβ ‖XSβ − z‖2 =
(XT

S XS)−1XT
S z, for all S ∈ P∗(M). Here XS is the design matrix with the first

column consisting of 1s to also estimate the intercept βS,0. We call this approach LM
separate.

3.5.2 Generalized additive model

The generalized additivemodel (GAM) extends the linear regressionmodel and allows
for nonlinear effects between the features and the response (Wood 2006b; Hastie et al.
2009). The fitted GAM takes the form gS(xS) = βS,0 + ∑

j∈S gS, j (xS, j ), where
the effect functions gS, j are penalized regression splines. We call this approach GAM
separate.

3.5.3 Projection pursuit regression

The projection pursuit regression (PPR) model extends the GAM model (Friedman
and Stuetzle 1981; Hastie et al. 2009). The PPR model takes the form gS(xS) =
βS,0 + ∑L

l=1 gS,l(β
T
S,l xS), where the parameter vector βS,l is an |S|-dimensional

unit vector. The PPR is an additive model, but in the transformed features βT
S,l xS

rather than in the original features xS . The ridge functions gS,l are unspecified and are
estimated along with the parameters βS,l using some flexible smoothing method. The
PPR model combines nonlinear functions of linear combinations, producing a large
class of potential models. Moreover, it is a universal approximator for continuous
functions for arbitrary large L and appropriate choice of gS,l (Hastie et al. 2009,
Sect. 11.2). We call this approach PPR separate.

3.5.4 Random forest

A random forest (RF) is an ensemble model consisting of a multitude of decision trees,
where the average prediction of the individual trees is returned. The first algorithmwas
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developed by Ho (1995), but Breiman (2001) later extended the algorithm to include
bootstrap aggregating to improve the stability and accuracy. We call this approach RF
separate.

3.5.5 Boosting

A(tree-based) boostedmodel is an ensemble learner consisting ofweightedweak base-
learners which has been iteratively fitted to the error of the previous base-learners and
together they form a strong learner (Hastie et al. 2009). The seminal boosting algorithm
was developed by Freund and Schapire (1997), but multitudes of boosting algorithms
has later been developed (Mayr et al. 2014), for example, CatBoost (Prokhorenkova
et al. 2018). We call this approach CatBoost separate.

3.6 The surrogate regressionmethod class

Since the separate regressionmethods train a new regression model gS(xS)

for each coalition S ∈ P∗(M), a total of 2M − 2 models has to be trained, which
can be time-consuming for slowly fitted models. The surrogate regression
method class builds on the ideas from the separate regression class, but
instead of fitting a new regressionmodel for each coalition, we train a single regression
model g(x̃S) for all coalitions S ∈ P∗(M), where x̃S is defined in Sect. 3.6.1. The
surrogate regression idea is used by Frye et al. (2021), Covert et al. (2021),
but their setup is limited to neural networks. In Sect. 3.6.1, we propose a general and
novel framework that allows us to use any regression model. Then, we relate our
framework to the previously proposed neural network setup in Sect. 3.6.2.

3.6.1 General surrogate regression framework

To construct a surrogate regression method, we must consider that most
regression models g rely on a fixed-length input, while the size of xS varies with
coalition S. Thus, we are either limited to regression models that support variable-
length input, or we can create a fixed-length representation x̃S of xS for all coalitions
S. The x̃S representation must also include fixed-length information about the coali-
tion S to enable the regression model g to distinguish between coalitions. Finally,
we need to augment the training data to reflect that g is to predict the conditional
expectation for all coalitions S.

In our framework, we augment the training data by systematically applying all
possible coalitions to all training observations. We can then train a single regression
model g on the augmented training data set, and the corresponding regression model
can then (in theory) estimate the contribution function v(S) for all coalitions S ∈
P∗(M) simultaneously.

To illustrate the augmentation idea, we consider a small example with M = 3
features and Ntrain = 2 training observations. Let X = [ x11 x12 x13

x21 x22 x23

]
and z = [ f (x1)

f (x2)

]

denote the training data and responses, respectively. In this setting,M = {1, 2, 3} and
P∗(M) = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} consists of six different coalitions S,
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or equivalently masks S = M\S. Assuming that g relies on fixed-length input, we
must represent both the observed values xS and coalition S in a fixed-length notation
for the surrogate regression methods to work.

To solve this, we first introduce I (S) = {1( j ∈ S) : j = 1, . . . , M} ∈ {0, 1}M ,
where 1( j ∈ S) is the indicator function which is one if j ∈ S and zero otherwise.
Then, I (S) is an M-dimensional binary vector where the j th element I (S) j is one
if the j th feature is in S (i.e., observed/conditioned on) and zero if it is in S (i.e.,
unobserved/unconditioned). The I function ensures fixed-length representations of
the coalitions/masks, and note that I (S) = 1M − I (S), where 1M is the size M vector
of 1s. Second, to obtain a fixed-length representation x̂S of the observed/conditioned
feature vector xS , we apply the fixed-length mask I (S) to x as an element-wise
product, that is, x̂S = x ◦ I (S) = x ◦ (1M − I (S)), where ◦ is the element-wise
product. Finally, we concatenate the fixed-length representations together to form the
augmented version of xS , namely, x̃S = {x̂S , I (S)}, which has 2M entries. We
include I (S) in x̃S such that the model g can distinguish between actual zeros in
xS and those induced by the masking procedure when creating x̂S . We treat I (S) as
binary categorical features.

After carrying out this procedure for all coalitions and training observations, we
obtain the following augmented training data and responses:

Xaug =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̃1,{1}
x̃1,{2}
x̃1,{3}
x̃1,{1,2}
x̃1,{1,3}
x̃1,{2,3}
x̃2,{1}
x̃2,{2}
x̃2,{3}
x̃2,{1,2}
x̃2,{1,3}
x̃2,{2,3}

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11 0 0 0 1 1
0 x12 0 1 0 1
0 0 x13 1 1 0
x11 x12 0 0 0 1
x11 0 x13 0 1 0
0 x12 x13 1 0 0
x21 0 0 0 1 1
0 x22 0 1 0 1
0 0 x23 1 1 0
x21 x22 0 0 0 1
x21 0 x23 0 1 0

︸ ︷︷ ︸
Observed values

0 x22 x23
︸ ︷︷ ︸
Mask

1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and zaug =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f (x1)
f (x1)
f (x1)
f (x1)
f (x1)
f (x1)
f (x2)
f (x2)
f (x2)
f (x2)
f (x2)
f (x2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5)

Thenumber of rows inXaug and zaug is Ntrain(2M−2). For example,with Ntrain = 1000

and M = 8 the augmented data Xaug consists of 254,000 rows, while the number of
rows is 65,534,000 when M = 16. This exponential growth can make it computation-
ally intractable to fit some types of regression models to the augmented training data{Xaug, zaug

}
in high-dimensions. A potential solution is to sample a subset of rows

from (5) and only use them to train the regression model. The observation x∗, which
wewant to explain, is augmented by the same procedure, and g(x̃∗

S) then approximates
the corresponding contribution function v(S, x∗).
Methods
For the surrogate regression method class, we consider the same regression
models as in Sect. 3.5.We call themethods for LM surrogate,GAM surrogate,
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PPR surrogate,RF surrogate, and CatBoost surrogate, and they take
the following forms:

LM surrogate: g(x̃S) = β0 +∑2M
j=1 β j x̃S, j = x̃TSβ.

GAM surrogate: g(x̃S) = β0 +∑M
j=1 g j (x̃S, j ) +∑2M

j=M+1 β j x̃S, j . That is,
we add nonlinear effect functions to the augmented features x̂S = x ◦ I (S) in x̃S
while letting the binary mask indicators I (S) in x̃S be linear.
PPR surrogate: g(x̃S) = β0 +∑L

l=1 gl(β
T
l x̃S), where gl and βl are the lth

ridge function and parameter vector, respectively.
RF surrogate: g(x̃S) is a RF model fitted to the augmented data on the same
form as in (5).
CatBoost surrogate: g(x̃S) is a CatBoostmodel fitted to the augmented
data on the same form as in (5).

3.6.2 Surrogate regression: neural networks

Thesurrogate regressionneural network (NN-Frye surrogate) approach
in Frye et al. (2021) differs from our general setup above in that they do not train
the model on the complete augmented data. Instead, for each observation in every
batch in the training process, they randomly sample a coalition S with probability
|S|!(M−|S|−1)!

M ! . Then they set the masked entries of the observation, i.e., the features
not in S, to an off-distribution value not present in the data. Furthermore, they do not
concatenate the masks to the data, as we do in (5).

We propose an additional neural network (NN-Olsen surrogate) approach
to illustrate that one can improve on the NN-Frye surrogate method. The main
conceptual differences between the methods are the following. First, for each batch,
we generate a missing completely at random (MCAR) mask with paired sampling.
MCAR means that the binary entries in the mask S are Bernoulli distributed with
probability 0.5, which ensures that all coalitions are equally likely to be considered.
Further, paired sampling means that we duplicate the observations in the batch and
apply the complement mask, S, on these duplicates. This ensures more stable training
as the network can associate both xS and xS with the response f (x). Second, we set
the masked entries to zero and include the binary mask entries as additional features,
as done in (5) and Olsen et al. (2022). This enables the network to learn to distinguish
actual zeros in the data set and zeros induced by the masking, removing the need to set
an off-distribution masking value. Additional differences due to implementation, for
example, network architecture and optimization routine, are elaborated in Appendix
A.

3.7 Time complexity

In this section, we elaborate on the time complexity of computing the Shapley value
explanations for the different method classes. We provide a simplified overview of
the complexities in Table 1 and the corresponding in-depth explanations here. In
general, we can decompose the computation time into three components for each
method: training, generating, and predicting. The method-independent computation
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time of setting up and using the Shapley value explanation framework is described in
Appendix A.

Training: The computation time of the training step depends on several method
(class) specific attributes. The independence method is trivial as no training
is needed; hence, its training time is zero. For all other methods, the computa-
tion time is affected by the number of features M , training observations Ntrain,
and models within the method. The number of models is one for the VAEAC and
surrogate regression methods, while it is 2M − 2 for the other methods.
In the former case, only a single model is trained, but in return, the surrogate
regressionmethods using (5) have doubled M and increased Ntrain by a factor
of 2M − 2. In the latter case, the number of features in each of the 2M − 2 models
varies from 1 to M , depending on the coalition S, which also alters the com-
putation time. The computation time is also increased if cross-validation is used
to tune some or all of the hyperparameters. Thus, the overall training time com-
plexity isO(Ctrain2M ), where Ctrain is method-specific and depends on the factors
discussed above. For example,Ctrain = 0 for the trivial independencemethod.
In contrast, estimating a single conditional multivariate normal distribution in the
Gaussianmethod yieldsCtrain = O(M2(M+Ntrain)), and the same for training
a single non-cross-validated linear model in the LM separate method. While
Ctrain = O(MNtreesNtrain log2 Ntrain) for the RF separate method, where
Ntrees is the number of balanced trees in the forest. Thus, the complexities of the
four methods are constant, linear, linear, and log-linear in the number of training
observations Ntrain, respectively.
Generating: The computation time of the generating step is only applicable to the
Monte Carlo-based methods as the regression-based methods do not generate any
Monte Carlo samples. The time needed to generate an |S|-dimensionMonte Carlo
sample x(k)

S can vary for different coalitions due to the coalition size. The time com-

plexity of generating the K MonteCarlo samples for the 2M−2 coalitions and Ntest
test observations is O(CMCK Ntest2M ), where CMC is method-specific and repre-
sents the generation of one Monte Carlo sample. For example, CMC corresponds
to sample one observation from the training data in the independencemethod,
which is done in constant time, that is, CMC = O(1). While in the Gaussian
method, CMC represents the cost of generating standard Gaussian data and con-
verting it to the associated multivariate conditional Gaussian distribution using
the Cholesky decomposition of the conditional covariance matrix �S|S , which is
O(M3). Note, however, that the cost of the Cholesky decomposition can be shared
among all K Monte Carlos samples and Ntest test observations. The computation
of the Cholesky decomposition could also have been considered part of the training
step.
Predicting: The computation time of the predicting step varies between theMonte
Carlo and regression paradigms due to their conceptually different techniques for
computing v(S). The Monte Carlo paradigm computes the contribution function
v(S) based on (3), while the regression paradigm uses (4). The Monte Carlo
paradigm relies on averaging K calls to the predictive model f for each of the
(2M − 2) coalition and Ntest test observation. Thus, the overall predicting time
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Table 1 A simplified overview of the time complexities of the paradigm/method classes

Paradigm/Method Class Training Generating x(k)
S Predicting v(S)

Monte Carlo O(Ctrain2M ) O(CMCK Ntest2M ) O(C f K Ntest2M )

Separate regression O(Ctrain2M ) – O(CgNtest2M )

Surrogate regression O(Ctrain) – O(CgNtest2M )

See Sect. 3.7 for in-depth explanations. Here, Ctrain is method-specific and depends on, e.g., the number of
features M , training observations Ntrain, and if cross-validation is used. Note that 2M is not applicable for
the VAEAC method as it is a single model, while the training time of the independence method is zero.
Furthermore, CMC denotes the computation time of generating one of the K Monte Carlo samples for each
of the 2M − 2 coalitions and Ntest test observations. Finally, C f and Cg represent the computation time of
one call to the predictive model f and the regression model g, respectively, and they depend on, e.g., M ,
Ntrain, and the model complexity

complexity for the Monte Carlo paradigm is O(C f K Ntest2M ), where C f rep-
resents the computation time of calling f once. In the regression paradigm, the
value of the contribution function is directly estimated as the output of a regression
model g. Thus, the overall predicting time complexity for the regression paradigm
is O(CgNtest2M ), where Cg represents the computation time of calling g once.
Both C f and Cg are influenced by, e.g., the number of features M and training
observations Ntrain, but also by the intricacy of the predictive and regressionmodel,
respectively. For example, the time complexity of calling a linear regressionmodel
with M features once isO(M), while it isO(Ntrees log2 Ntrain) for a random forest
model with Ntrees balanced trees.

3.8 Additional methods in the supplement

In addition to the methods described in Sects. 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, we
include dozens more generative, separate regression, and surrogate
regression methods in the Supplement. These methods are not included in the
main text as they generally perform worse than the introduced methods. For the
generative method class, we consider three additional VAEAC approaches with
methodological differences and point to eleven other potential generativemethods. For
the separate regression method class, we consider twenty other regression
models, and most of these are also applicable to the surrogate regression
method class. Among the regression methods are linear regression with interactions,
polynomial regression with and without interactions, elastic nets, generalized additive
models, principal component regression, partial least squares, K-nearest neighbors,
support vector machines, decision trees, boosting, and neural networks. In the Sup-
plement, we apply the additional methods to the numerical simulation studies and
real-world data experiments conducted in Sects. 4 and 5, respectively.

4 Numerical simulation studies

A major problem of evaluating explanation frameworks is that there is no ground
truth for authentic real-world data. In this section, we simulate data for which we can
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compute the true Shapley values φtrue and compare how close the estimated Shapley
values φ̂q are when using approach q. We gradually increase the complexity of the
setups in the simulation studies to uncover in which settings the different methods
described in Sect. 3 perform the best and should be used. Additionally, as we focus
on conditional Shapley values, we vary the dependencies between the features within
each simulation setup to investigate how the methods cope with different dependence
levels.

In all experiments, we generate univariate prediction problems with M = 8-
dimensional features simulated from a multivariate Gaussian distribution p(x) =
N8(0, �), where �i j = ρ|i− j | for ρ ∈ {0, 0.3, 0.5, 0.9} and 1 on the diagonal. Larger
values of ρ correspond to higher dependencies between the features. Higher feature
dimensions are possible, but we chose M = 8 to keep the computation time of the
simulation studies feasible. The real-world data sets in Sect. 5 contain more features.
In Sect. 2.2.3, we discuss approximation strategies used in the literature to compute
Shapley value explanations in higher dimensions.

We let the number of training observations be Ntrain = 1000, while we explain

Ntest = 250 test observations. Thus, the training data set is
{
x[i], y[i]}Ntrain

i=1 , where
x[i] ∼ N8(0, �) and the response y[i] = ftrue(x[i]) + ε[i]. The function ftrue is
different in different experiments and ε[i] ∼ N (0, 1). The test data sets are created by
the same procedure. We provide additional experiments with other settings and some
illustrative plots of the data in the Supplement.

We evaluate the performance of the different approaches by computing the mean
absolute error (MAE) between the true and estimated Shapley values, averaged over
all test observations and features. This criterion has been used in Redelmeier et al.
(2020), Aas et al. (2021a), Aas et al. (2021b), Olsen et al. (2022). The MAE is given
by

MAE = MAEφ(method q) = 1

Ntest

Ntest∑

i=1

1

M

M∑

j=1

|φ j,true(x[i]) − φ̂ j,q(x[i])|. (6)

The true Shapley values are in general unknown, but we can compute them with
arbitrary precision in our setup with multivariate Gaussian distributed data, as the
conditional distributions ptrue(xS |xS) are analytically known and samplable for all

S. Thus, by sampling x(k)
S,true

∼ ptrue(xS |xS), we can compute the true contribution

function vtrue(S) in (2) by using (3). The true Shapley values are then obtained by
inserting the vtrue(S) quantities into the Shapley value formula in (1). The vtrue(S)

quantities can be arbitrarily precise by choosing a sufficiently large number of Monte
Carlo samples, e.g., K =10,000.

4.1 Linear regressionmodels

The first simulation setup should be considered a sanity check, as we generate the
response y[i] according to the following linear regression models:
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Fig. 2 Results of the lm_no_interactions experiment: boxplots of the mean absolute error between
the true and estimated Shapley values for the test observations using different methods and for different
dependence levels ρ

lm_no_interactions: flm,no(x) = β0 +∑M
j=1 β j x j ,

lm_more_interactions: flm,more(x) = flm,no(x) + γ1x1x2 + γ2x3x4,
lm_numerous_interactions:
flm,numerous(x) = flm,more(x) + γ3x5x6 + γ4x7x8,

where β = {1.0, 0.2,− 0.8, 1.0, 0.5,− 0.8, 0.6,− 0.7,− 0.6} and γ = {0.8,− 1.0,
− 2.0, 1.5}. For each setup, we fit a predictive linear model f with the same form as
the truemodel. For example, in the lm_more_interactions setup, the predictive
linear model f has eight linear terms and two interaction terms reflecting the form of
flm,more. We fit the predictive models using the lm function in base R.
In Figs. 2, 3, and 4, we show the MAE for each test observation (i.e., the abso-

lute error averaged only over the features), and we keep the methods in the same
order throughout the figures. In what follows, we briefly summarize the results of the
different simulation setups.

lm_no_interactions (Fig. 2): For ρ = 0, we see that ctree and LM
surrogate perform the best. The independence approach, which makes
the correct feature independence assumption, is close behind. For ρ > 0,
the parametric and separate regression (LM, GAM, and PPR) meth-
ods generally perform the best. In particular, the LM separate method,
which makes the correct model assumption, is the best-performing approach.
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Fig. 3 Results of the lm_more_interactions experiment

The generative and empirical approaches form the mid-field, while the
surrogate regression and independencemethods seem to be the least
precise.
lm_more_interactions (Fig. 3): In this case, the LM separate method
performs poorly, which is reasonable due to the incorrect model assumption. For
ρ = 0, the ctree approach is the most accurate, but the independence and
parametricmethods are close behind. For ρ > 0, the parametricmethods
are clearly the best approaches as theymake the correct parametric assumption. The
PPR separatemethod performs very well, and the generative approaches
are almost on par for moderate correlation. The NN-Olsen surrogate
method is the most accurate surrogate regression approach. In general,
the separate regression methods perform better as ρ increases due to
the simpler regression problems/prediction tasks. The performance of the GAM
separate method particularly improves for larger values of ρ.
lm_numerous_interactions (Fig. 4): The overall tendencies are very sim-
ilar to those in the lm_more_interactions experiment. The parametric
methods are by far the most accurate. Further, ctree is the best generative
approach, theNN-Olsen surrogate is the bestsurrogate regression
method, and thePPR separatemethod is the best separate regression
approach.
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Fig. 4 Results of the lm_numerous_interactions experiment

In boxplots, the box andmidline represent the interquartile range (IQR) andmedian,
respectively, while the dots denote outliers beyond the whisker boundaries, i.e., obser-
vations with MAE scores less/greater than the lower/upper quartile minus/plus 1.5
times the IQR. Olsen (2023) investigates the underlying structure of the outliers and
finds that the same test observations often constitute the outliers for the different meth-
ods. Crucially, this means that some predictions are intrinsically more challenging to
compute accurate Shapley values for. Furthermore, Olsen (2023) illustrates that these
observations are often in the outer regions of the training data where less data was
available to learn the dependency structures between the features.

4.2 Generalized additive models

In this section, we first investigate situations with a nonlinear relationship between
the features and the response,whilewe later also include pairwise nonlinear interaction
terms.More specifically,wefirst gradually progress from thelm_no_interactions
model to a full generalized additive model by applying the nonlinear function cos(x j )
to a subset of the features in x. Then, we extend the full generalized additive model
by also including pairwise nonlinear interaction terms of the form g(x j , xk) =
x j xk + x j x2k + xkx2j . We generate the features x[i] as before, but the response value
y[i] is now generated according to:
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Fig. 5 Results of the gam_three experiment

gam_three: fgam,three(x) = β0 +∑3
j=1 β j cos(x j ) +∑M

j=4 β j x j ,

gam_all: fgam,all(x) = β0 +∑M
j=1 β j cos(x j ),

gam_more_interactions:
fgam,more(x) = fgam,all(x) + γ1g(x1, x2) + γ2g(x3, x4),
gam_numerous_interactions:
fgam,numerous(x) = fgam,more(x) + γ3g(x5, x6) + γ4g(x7, x8),

where we let β = {1.0, 0.2,− 0.8, 1.0, 0.5,− 0.8, 0.6,− 0.7,− 0.6} and γ =
{0.8,− 1.0,− 2.0, 1.5}, i.e., the same coefficients as in Sect. 4.1.

As the true models contain smooth nonlinear effects and smooth pairwise nonlinear
interaction terms,we let the corresponding predictivemodels beGAMswith splines for
the nonlinear terms and tensor product smooths for the nonlinear interaction terms. For
example, in the gam_three experiment, the fitted predictive model f uses splines on
the three first featureswhile the others are linear. In thegam_more_interactions
experiment, f uses splines on all eight features, and tensor product smooths on the
two nonlinear interaction terms. We fit the predictive models using the mgcv package
with default parameters (Wood 2006a, 2022). In what follows, we briefly summarize
the results of the different simulation setups.

gam_three (Fig. 5): On the contrary to the lm_no_interactions experi-
ment, we see that the LM separate approach performs much worse than the
GAM separate approach, which makes sense as we have moved from a linear
to a nonlinear setting. For ρ = 0, we see that ctree and independence are the
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Fig. 6 Results of the gam_all experiment

best approaches. For ρ > 0, the parametric approaches are superior, but the
GAM separate approach is not far behind,while theNN-Olsen surrogate
method is the best surrogate regression approach.
gam_all (Fig. 6): The performance of the LM approaches continue to degenerate.
The separate regressionmethods get gradually better for higher values of
ρ, but the parametric methods are still superior. The generative methods
constitute the second-best class for ρ ∈ {0.3, 0.5}, but the GAM separate and
PPR separate approaches are relatively close. The latter approaches outper-
form the generative methods when ρ = 0.9.
gam_more_interactions (Fig. 7): We see similar results to those in the
gam_all experiment. The parametric approaches are superior in all set-
tings. The generative methods perform quite well for ρ < 0.5, but they
are beaten by the PPR separate method for ρ = 0.9. Note that the GAM
separate approach now falls behind the PPR separate approach, as it is
not complex enough to model the nonlinear interaction terms. This indicates that
complex separate regression approaches are needed to model complex
predictive models. Furthermore, the RF surrogate method is on par or out-
performs the NN based surrogate regression approaches.
gam_numerous_interactions (Fig. 8): We get nearly identical results as
in the previous experiment. Hence, we do not provide further comments on the
results.
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Fig. 7 Results of the gam_more_interactions experiment

4.3 Computation time

In this section, we discuss the computation time used by the different methods to
estimate the Shapley values, as a proper evaluation of the methods should not only be
limited to their accuracy. We report the CPU times to get a fair comparison between
the approaches, as some methods are parallelized and would, therefore, benefit from
multiple cores when it comes to elapsed time. The CPU times for the different methods
will vary significantly depending on the operating system, hardware, and implemen-
tation. The times we report here are based on an Intel(R) Core(TM) i5-1038NG7
CPU@2.00GHz with 16GB 3733MHz LPDDR4X RAM running R version 4.2.0 on
the macOS Ventura (13.0.1) operating system. Throughout this article, we mean CPU
time when we discuss time.

In Table 2, we report the time it took to estimate the Shapley values using the
different methods in the gam_more_interactions experiment with ρ = 0.5,
Ntrain = 1000, and Ntest = 250 in Sect. 4.2. We split the total time into the same
three time components as in Sect. 3.7. That is, time used training the approaches, time
used generating the Monte Carlo samples, and time used predicting the v(S) using
Monte Carlo integration (including the calls to f ) or regression. We denote these
three components by training, generating, and predicting, respectively. The matrix
multiplication needed to estimate the Shapley values from the estimated contribution
functions is almost instantaneous and is part of the predicting time. Furthermore,
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Fig. 8 Results of the gam_numerous_interactions experiment

Table 2 TheCPU times usedby themethods to computeShapley values for the Ntest = 250 test observations
in the gam_more_interactions experiment with ρ = 0.5 and Ntrain = 1000

The format of the CPU times is hours:minutes:seconds, where we omit the larger units of time if they are
zero, and the colors indicate the different method classes
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creating the augmented training data for the surrogate regression methods
in Sect. 3.6.1 takes around one second and is part of the training time. We see a wide
spread in the times, but, in general, the Monte Carlo approaches take, on average,
around half an hour, while the regression methods are either much faster or slower,
depending on the approach.

The Monte Carlo methods make a total of NtestK (2M − 2) calls to the predictive
model f to explain the Ntest test observations with M features and K Monte Carlo
samples. In our setting with Ntest = 250, M = 8, and K = 250, the predictive model
is called N f =15,875,000 times, thus, the speed of calculating f greatly effects the
explanation time. For example, theGAMmodel in thegam_more_interactions
experiment is slow, as we can see in Table 2, since the predicting time constitutes
the majority of the total time. To compare, N f calls to the linear model in the
lm_more_interactions experiment takes approximately 3 CPU seconds, while
the GAMs in the gam_three and gam_more_interactions experiments take
roughly 13 and 35 CPU minutes, respectively. In the latter experiment, the PPR and
RF models in Sect. 4.5 take around 0.5 and 40 CPU minutes, respectively.

Theempirical and ctree approaches have lower predicting time than the other
Monte Carlo-based methods due to fewer calls to f since they use weighted Monte
Carlo samples; see Sects. 3.2 and 3.4.1. The three influential time factors for theMonte
Carlo methods are: the training time of the approach (estimating the parameters), the
sampling time of the Monte Carlo samples, and the computational cost of calling f ;
see Sect. 3.7.

In contrast, both theseparate regression andsurrogate regression
methods use roughly the same time to estimate the Shapley values for different
predictive models f , as f is only called Ntrain times when creating the training
data sets. After that, we train the separate regression and surrogate
regression approaches and use them to directly estimate the contribution func-
tions. The influential factors for the regression methods are the training time of the
2M − 2 separate models (or the one surrogate model) and the prediction time of call-
ing them a total of Ntest(2M − 2) times. The former is the primary factor, and it is
influenced by, e.g., hyperparameter tuning and the training data size. The latter can
be a problem for the augmented training data for the surrogate regression
methods, as we will see in Sect. 5.4.

When excluding the time of the training step, which is only done once and can be
considered as an upfront time cost, it is evident that the regression-based methods pro-
duce the Shapley value explanations considerably faster than the Monte Carlo-based
methods. For example, consider the most accurate Monte Carlo and regression-based
methods in the gam_more_interactions experiment with ρ = 0.5, i.e., the
Gaussian and PPR separate methods, respectively. The Gaussian approach
uses approximately 37 CPU minutes to explain 250 predictions, an average of 8.88
seconds per explanation. In contrast, the PPR separate method explains all the
Ntest = 250 predictions in half a second. Thus, the PPR separate method is
approximately 4440 times faster than theGaussian approach per explanation, which
is essential for large values of Ntest. However, note that this factor is substantially lower
for predictive models that are less computationally expensive to call.
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The computation times reported in Table 2 align with the time complexities dis-
cussed in Sect. 3.7. However, it is crucial to consider the cost of the cross-validation
procedure when evaluating the computation times. For example, the RF separate
method is by far the slowest separate regression method, but the large train-
ing time is (mainly) due to the method’s extensive hyperparameter tuning described
in Appendix A. As the number of folds and hyperparameter combinations in the
cross-validation procedure is Nfolds = 4 and Nhyper = 12, respectively, we fit a
total of NfoldsNhyper(2M − 2) = 12 192 random forest models. In contrast, the LM
separate method directly fits the 2M − 2 separate models without any tuning. In
the Supplement, we omit the cross-validation procedure and use default hyperparame-
ter values, which significantly reduces the computation time but also the performance.
The two slowest methods are the NN-Frye and NN-Olsen surrogatemethods,
which consider six and nine hyperparameter combinations each. Thus, using default
values would reduce the training time by a factor of 6 and 9, respectively, but at the
cost of precision.

4.4 Number of training observations

To investigate if the training data size has an effect on the ordering of the meth-
ods according to the MAE criterion, we repeat the experiments in Sects. 4.1 and 4.2
with Ntrain ∈ {100, 5000}, and some of them with Ntrain =20,000. We obtain nearly
identical results, except for three distinctions. First, the independence approach
becomes relatively more accurate compared to the other methods when Ntrain = 100,
and worse when Ntrain ∈ {5000, 20, 000}. This is intuitive, as modeling the data dis-
tribution/response is easier when the methods have access to more data. Second, in
the simple experiments in Sects. 4.1 and 4.2 and Ntrain ∈ {5000, 20, 000}, the GAM
separate and PPR separate approaches become even better, but are still beaten
by the Gaussian and copula approaches in most experiments. Third, we observe
that the MAE has a tendency to decrease when Ntrain increases. However, we cannot
directly compare the MAE scores as they depend on the fitted predictive model f ,
which changes when Ntrain is adjusted.

4.5 Other choices for the predictive model

In practice, it might be difficult to identify the pairwise interactions in Sect. 4.2. Hence,
one would potentially fit a model without them. We included them above as we knew
the data-generating processes and wanted a precise model, but we now pretend oth-
erwise and fit other predictive models. We consider two different types of complex
black-box predictive models: projection pursuit regression (PPR) and random forest
(RF), and we conduct the same type of hyperparameter tuning as in the other experi-
ments. However, we conduct no feature transformations and directly use the original
features when fitting the models. These models are less precise than the GAMs in
Sect. 4.2, which have an unfair advantage as they use the true formulas. For example,
in thegam_more_interactions experiment, theMSE test prediction valueswere
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Fig. 9 Experiment gam_more_interactions with a PPR as the predictive model

1.32, 3.67, 7.36 for GAM, PPR, RF, respectively, where 1 is the theoretical optimum
as Var(ε) = 1.

We only include the figures for the gam_more_interactions experiment,
as the corresponding figures for the other experiments are almost identical. The
results are displayed in Figs. 9 and 10 for the PPR and RF models, respectively,
and the results are quite similar to those obtained for the GAM model in Fig. 7. In
general, the parametric methods are superior, followed by the generative
methods, while the empirical, separate regression, and surrogate
regression approaches are worse. Some separate regression approaches
perform, however, much better for high dependence. The independence method
performs well when ρ = 0, but it gradually degenerates as the dependence level
increases, as expected. We see that the PPR separate approach performs well for
the PPR predictive model, but it is outperformed by the CatBoost separate
method for the RF models. These results indicate that for our experiments, it is ben-
eficial to choose a regression method similar to the predictive model; that is, for
a non-smooth model, one should consider using a non-smooth regression method.
However, note that the difference in the MAE is minuscule.
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Fig. 10 Experiment gam_more_interactions with a RF as the predictive model

4.6 Different data distribution

In the Supplement, we repeat all the experiments described in Sects. 4.1 and 4.2 but
with multivariate Burr distributed features instead of Gaussian ones. The Burr distri-
bution allows for heavy-tailed, skewed marginals, and nonlinear dependence. In this
case, the parametric Burr approach, which assumes Burr distributed data, not
surprisingly, is the most accurate. The Gaussian method, which now incorrectly
assumes Gaussian distributed data, performs worse. The VAEAC approach performs
very well on the Burr distributed data, which was also observed by Olsen et al. (2022).
In general, VAEAC is the second-best approach after Burr. The PPR separate
method also performs well, but compared to the Burr and VAEAC approaches, it is
less precise in the experiments with nonlinear interaction terms.

4.7 Summary of the experiments

Making the correct (or nearly correct) parametric assumption about the data is advan-
tageous, as the corresponding parametric methods significantly outperform the
other approaches in most settings. In general, if the distribution is unknown, the
second-best option for low to moderate levels of dependence is the generative
method class. The separate regression approaches improve relative to the
other methods when the feature dependence increases, and for highly dependent fea-
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tures, the PPR separate approach is a prime choice. Furthermore, the separate
regression methods that match the form of f often give more accurate Shap-
ley value estimates. The PPR model in the PPR separate approach is simple to
fit but is still very flexible and can, therefore, accurately model complex predictive
models. Theindependence approach is accurate for no (or very low) feature depen-
dence, but it is often the worst approach for high feature dependence. The NN-Olsen
surrogate method outperforms the NN-Frye surrogate approach in most
settings and is generally the best surrogate regression approach.

We found it (often) necessary to conduct some form of cross-validation to tune
(most of) the separate regression and surrogate regression meth-
ods to make them more competitive. Using default hyperparameter values usually
resulted in less accurate Shapley value explanations; see additional experiments in the
Supplement. The hyperparameter tuning can be time-consuming, but it was feasible
in our setting with M = 8 features and Ntrain = 1000 training observations. The
regression-based methods use most of their computation time on training, while the
predicting step is almost instantaneous for several methods. The opposite holds for the
Monte Carlo-based approaches, which are overall slower than most regression-based
methods. Hence, we have a trade-off between computation time and Shapley value
accuracy in the numerical simulation studies. We did not conduct hyperparameter
tuning for the empirical, parametric, and generative methods. Thus, the
methods where we conduct hyperparameter tuning have an unfair advantage regarding
the precision of the estimated Shapley values.

5 Real-world data experiments

In this section, we fit several predictive models to different real-world data sets from
the UCI Machine Learning Repository and then use the Shapley value explanation
framework to explain the models’ predictions. The models range from complex sta-
tistical models to black-box machine learning methods. We consider four data sets:
Abalone, Diabetes, Wine, and Adult. Some illustrative data plots are provided in the
Supplement.

For real-world data sets, the true Shapley values are unknown. Hence, we cannot
use the MAE evaluation criterion from Sect. 4 to evaluate and rank the approaches.
Instead, we use the MSEv criterion proposed by Frye et al. (2021) and later used by
Olsen et al. (2022). The MSEv is given by

MSEv = MSEv(method q) = 1

NS

∑

S∈P∗(M)

1

Ntest

Ntest∑

i=1

(
f (x[i]) − v̂q(S, x[i])

)2
,

(7)

where NS = |P∗(M)| = 2M − 2 and v̂q is the estimated contribution function using
method q. The motivation behind the MSEv criterion is that ESEx(vtrue(S, x) −
v̂q(S, x))2 can be decomposed as
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Fig. 11 Illustration of a fairly strong linear relationship between the MSEv and MAE criteria for the
gam_more_interactions experiment with Gaussian data and ρ = 0.5

ESEx(vtrue(S, x) − v̂q(S, x))2 = ESEx( f (x) − v̂q(S, x))2

− ESEx( f (x) − vtrue(S, x))2,
(8)

see Covert et al. (2020, Appendix A). The first term on the right-hand side of (8) can be
estimated by (7), while the second term is a fixed (unknown) constant not influenced
by the approach q. Thus, a low value of (7) indicates that the estimated contribution
function v̂q is closer to the true counterpart vtrue than a high value.

An advantage of the MSEv criterion is that vtrue is not involved. Thus, we can
apply it to real-world data sets. However, the criterion has two drawbacks. First, we can
only use it to rank the methods and not assess their closeness to the optimum since the
minimum value of the MSEv criterion is unknown. Second, the criterion evaluates the
contribution functions andnot theShapley values. Itmight be the case that the estimates
for v(S) overshoot for some coalitions and undershoot for others, and such errors may
cancel each other out in theShapley value formula in (1).Nevertheless, in the numerical
simulation studies in Sect. 4, we computed both criteria to compare the ordering of
two criteria empirically. We generally observe a relatively linear relationship between
the MAE and MSEv criteria. That is, a method that achieves a low MSEv score
also tends to obtain a low MAE score, and vice versa. To illustrate this tendency,
we include Fig. 11, where we plot the MSEv criterion against the MAE criterion for
the gam_more_interactions experiment with Gaussian distributed data with
ρ = 0.5. Note that the orderings of the two criteria are not one-to-one, but they give
fairly similar rankings of the methods.
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In Fig. 3, we report the MSEv scores and CPU times of the different methods
for the four data sets. The Abalone, Diabetes, and Wine data sets were run on the
same system as specified in Sect. 4.3, while the Adult data set was run on a shared
computer server running Red Hat Enterprise Linux 8.5 with two Intel(R) Xeon(R)
Gold 6226R CPU@2.90GHz (16 cores, 32 threads each) and 768GB DDR4 RAM,
due to memory constraints on the former system. Thus, one should not compare the
CPU times across these systems but only theCPU times of the differentmethodswithin
the same experiment. More detailed decomposition of the CPU times and additional
methods are provided in the Supplement.

5.1 Abalone

We first consider the classical Abalone data set with mixed features. The data set
originates from a study by the Tasmanian Aquaculture and Fisheries Institute (Nash
et al. 1994) and has been used in several XAI papers (Vilone et al. 2020; Aas et al.
2021b; Frye et al. 2021; Olsen et al. 2022). The data set contains clear nonlinearity
and heteroscedasticity among the pairs of features, and there is a significant pairwise
correlation between the features, as all continuous features have a pairwise correlation
above 0.775. The mean correlation is 0.89, and the maximum is 0.99. Furthermore,
all marginals are skewed.

We split the 4177 observations into training (75%) and testing (25%) data sets.
The goal is to predict the age of the abalone based on M = 8 easily obtain-
able features: Length, Diameter, Height, WholeWeight, ShuckedWeight,
VisceraWeight, ShellWeight, and Sex. All features are continuous except
for Sex which is a three-level categorical feature (infant, female, male). Thus, the
empirical and parametric methods are not applicable. However, to remedy
this, we train two PPR models to act as our predictive models; one based on all fea-
tures (PPRall) and another based solely on the continuous features (PPRcont).We chose
the PPR model as it outperformed the other prediction models we fitted (GAM, RF,
CatBoost). The test MSE increases from 2.04 to 2.07 when excluding Sex. Cross-
validation determined that number of terms in PPRall and PPRcont should be 4 and 7,
respectively.

Table 3 shows that the best approaches for explaining the PPR predictive models
are the PPR separate, NN-Olsen surrogate, and VAEAC methods. For the
Abalonecont data set, the PPR separate and NN-Olsen surrogate methods
perform equally well and share first place, but both methods are marginally out-
performed by the VAEAC approach for the Abaloneall data set. However, both the
VAEAC and NN-Olsen surrogate methods are very slow compared to the PPR
separate approach.The second-bestMonteCarlo-basedmethod for theAbalonecont
data set is theGaussiancopula approach, even though theAbalone data set is far from
Gaussian distributed. This is probably because the copula method does not make a
parametric assumption about the marginal distributions of the data, but rather the cop-
ula/dependence structure, which makes it a more robust method than the Gaussian
approach.
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Table 3 The MSEv scores and CPU times for the methods applied to the real-world data sets in Sect. 5

The format of the CPU times is days:hours:minutes:seconds, where we omit the larger units of time if they
are zero, and the colors indicate the different method classes

5.2 Diabetes

The diabetes data set stems from Efron et al. (2004) and contains M = 10 baseline
features; Age, Sex, BMI, BP (blood pressure), and six blood serum measurements
(S1, S2, S3, S4, S5, S6) obtained from 442 diabetes patients. The response of
interest is a quantitative measure of disease progression one year after the baseline.
Like Efron et al. (2004), we treat Sex as numerical and standardize all features;
hence, we can apply all methods. Many features are strongly correlated, with a mean
absolute correlation of 0.35, while the maximum is 0.90. The Age feature is the least
correlated with the other features. Most scatter plots and marginal density functions
display structures andmarginals somewhat similar to the Gaussian distribution, except
those related to the S4 feature, which has a multi-modal marginal. We split the data
into a training and test data set at a 75–25 ratio, and we let the predictive model be
a principle component regression (PCR) model with six principal components. This
model outperformed the linear model and cross-validated random forest, XGBoost,
CatBoost, PPR, and NN models in prediction error on the test data. The PCR model
is not easily interpretable as it does not directly depend on the features but on their
principal components.

Table 3 shows that the LM separate, GAM separate, and PPR separate
methods obtain the lowest MSEv scores, with the VAEAC, Gaussian, and copula
approaches having nearly as lowMSEv scores. We are not surprised that the latter two
methods are competitive due to the Gaussian-like structures in the Diabetes data set.
The LM separatemethod is the fastest approach, with a CPU time of 1.9 seconds.
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5.3 Red wine

The Red Wine data set contains information about variants of the Portuguese Vinho
Verde wine (Cortez et al. 2009). The response is a quality score between 0 and
10, while the M = 11 continuous features are based on physicochemical tests:
fixed acidity,volatile acidity,citric acid,residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, density,
pH, sulphates, and alcohol. For the Red Wine data set, most scatter plots and
marginal density functions display structures and marginals far from the Gaussian
distribution, as most of the marginals are right-skewed. Many of the features have no
to moderate correlation, with a mean absolute correlation of 0.20, while the largest
correlation in absolute value is 0.683 between pH and fix_acid. The data set con-
tains 1599 wines, and we split it into a training (1349) and a test (250) data set. A
cross-validated XGBoost model and a random forest with 500 trees perform equally
well on the test data, and we use the latter as the predictive model f .

Table 3 shows that the RF separate approach is the best method by far. Next,
we have the CatBoost separate, RF surrogate, empirical, and VAEAC
methods. The RF surrogate and CatBoost surrogate perform well com-
pared to the other surrogate regression methods. The good performance of
the non-smooth RF separate and CatBoost separate methods on the non-
smooth predictive model f supports our findings from the simulation studies, where
we observed that using a separate regression method with the same form
as f was beneficial. The generative methods perform better than the GH and
copula methods, while the Gaussian method falls behind. This is intuitive as the
data distribution of the Red Wine data set is far from the Gaussian distribution.

5.4 Adult

The Adult data set is based on the 1994 Census database, and the goal is to
predict whether a person makes over $50,000 a year based on M = 14 mixed fea-
tures: age (cont.), workclass (7 cat.), fnlwgt (cont.), education (16 cat.),
education-num (cont.), marital-status (7 cat.), occupation (14 cat.),
relationship (6 cat.), race (5 cat.), sex (2 cat.), capital-gain (cont.),
capital-loss (cont.), hours-per-week (cont.), and native-country (41
cat.). The pairwise Pearson correlation coefficients for the continuous features are all
close to zero, with a mean absolute correlation of 0.06. The data set contains 30,162
individuals, and we split it into a training (30,000) and a test (162) data set. We train a
CatBoost model on the training data to predict an individual’s probability of making
over $50,000 a year and use the test data to compute the evaluation criterion. We used
a relatively small test set due to memory constraints, and we chose the CatBoost as it
outperformed the other prediction models we fitted (LM, GAM, RF, NN).

Table 3 shows that the best method is the CatBoost separate approach, while
second place is shared by the RF separate and VAEAC methods. Note that the
difference in the MSEv score is very small. Like in the previous experiments, we
observe that using a separate regression method with the same form as f
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Table 4 Decomposed computation times for the Adult data set experiment with M = 14, Ntrain =30,000,
and Ntest = 162

is beneficial. The ctree approach supports mixed data, but we deemed it infeasible
due to a very long computation time. Furthermore, the surrogate regression
methods based on (5) ran out of memory as Xaug consists of 30,000×(214 − 2) =
491,460,000 training observations.

In Table 4, we decompose the Adult computation times reported in Table 3 in the
same manner as in Sect. 4.3. We see that the training times dwarf the predicting times
for the regression-based methods, while the opposite holds for the Monte Carlo-based
methods when including the generating times. Recall that the training time is a one-
time upfront cost. In contrast, the generating and predicting times are more interesting
as they express the time needed to compute future Shapley value explanations. In
particular, the sum of the generating and predicting times divided by Ntest = 162
yields an estimate of the time needed to explain one new prediction in the future.

The long training time of the RF separatemethod is due to the hyperparameter
tuning, as discussed in Sect. 4.3. In the Supplement, we include a random forestmethod
without hyperparameter tuning but instead with default values and a lower number of
trees, denoted by RF-def separate. It obtains an MSEv = 0.028 with a training
time of 12:49:17.0, i.e., a 99.5% reduction in the training time. The competitiveMSEv

illustrates that hyperparameter tuning was not essential in this experiment, unlike
in the simulation studies where hyperparameter tuning was crucial for obtaining a
competitive method. Furthermore, as discussed in Sect. 2.2.3, using an approximation
strategy with NS < 2M − 2 coalitions would also speed up the computations. This
could also make the other surrogate regression methods applicable, as the
size of the augmented training data would be reduced by a factor of NS/(2M − 2).

6 Recommendations

In this section, we propose a list of advice for when to use the different methods and
method classes based on the results of the simulations studies and the real-world data
experiments. The list is not exhaustive. Hence, it must not be interpreted as definite
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rules but as guidance and points that should be considered when using conditional
Shapley values for model explanation.

1. For data sets with no or minuscule feature dependencies, the independence
approach is the simplest method to use.

2. In general, a parametric approach with the correct (or nearly correct) para-
metric assumption about the data distribution generates themost accurate Shapley
values.

The copulamethod does not make an assumption about the marginals of the
data, but rather the copula/dependence structure, which makes it a more robust
method.
For features that do not fit the assumed distribution in the parametric
approach, one can consider transformations, for example, power transforma-
tions, to make the data more Gaussian-like distributed.
For categorical features, one can use, e.g., encodings or entity embeddings to
represent the categorical features as numerical. This is needed, as no directly
applicable multivariate distribution exists for mixed data. However, there exist
copulas that support mixed data.
If the parametricmethods are not applicable, the next best option is (often)
a generative or separate regressionmethod,where all considered
approaches support mixed data sets by default.

3. For the separate and surrogate regression methods, using a method
with the same form as the predictive model f provides more precise Shapley
value estimates.

For some predictivemodels, e.g., the linear regressionmodel in Fig. 2,we know
that the true conditional model is also a linear model. Thus, using a regression
method that can model a linear model (e.g., lm, GAM, PPR) produces more
accurate Shapley values. However, the form of the true conditional model is
usually unknown for most predictive models.
It is important that the regression method used is flexible enough to esti-
mate/model the predictive model f properly.
In the numerical simulation studies, the separate regression meth-
ods performed relatively better compared to the other method classes for
higher feature dependence. In the real-world experiments, the separate
regression methods were also (among) the best approaches on data sets
with moderate dependence.
In general, conducting hyperparameter tuning of the regression methods
improves the precision of the produced explanations, but this increases the
computation time.
In the simulation studies, a PPR separate approach with fixed L = |S|
(often) provides fast and accurate Shapley value explanations; see the Supple-
ment.

4. Themodeling of the conditional distributions p(xS |xS) in theMonteCarlo-based
methods is independent of the predictive model f .
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For popular data sets, one can fine-tune an empirical, parametric, or
generative method and let other researchers reuse the method to estimate
Shapley values for their own predictive models.
If a researcher is to explain several predictive models fitted to the same data,
then reusing the generated Monte Carlo samples will save computation time.

5. There is a time-accuracy trade-off between the different method classes and
approaches.

The simplest separate and surrogate regression methods are
rapidly trained, while the complex methods are time-consuming. This is, how-
ever, a one-time upfront time cost. In return, all regression-based methods
produce the Shapley value explanations almost instantly. Thus, developers
can develop the predictive model f simultaneously with a suitable regression-
basedmethod and deploy them together. The user of f will then get predictions
and explanations almost instantaneously.
In contrast, several of theMonte Carlo-basedmethods are trained considerably
faster than many of the regression-based methods but are, in return, substan-
tially slower at producing the Shapley value explanations. Generating Monte
Carlo samples and using them to estimate the Shapley values for new predic-
tions are computationally expensive and cannot be done in the development
phase. Thus, the Monte Carlo-based methods cannot produce explanations in
real-time.
If the predictive model f is computationally expensive to call, then the Monte
Carlo-based methods will be extra time-consuming due to O(K N2M ) calls
to f . Here, K , N , and M are the number of Monte Carlo samples, predic-
tions to explain, and features, respectively. In contrast, the separate and
surrogate regression methods make only O(N2M ) calls to their fit-
ted regression model(s).
The regression-based methods can be computationally tractable when the
Monte Carlo-based methods are not, for example, when N is large. We can
reduce the time by decreasing the number of Monte Carlo samples K , but this
results in less stable and accurate Shapley value explanations.
If accurate Shapley values are essential, then a suitable parametric,
generative, or separate regression approach with the same form
as f yields desirable estimates, depending on the dependence level. The
NN-Olsen surrogate method also provided accurate Shapley values for
some real-world data sets. Furthermore, hyperparameter tuning should be con-
ducted for extra accuracy.
If coarsely estimated Shapley values are acceptable, then some of the simple
separate regression methods can be trained and produce estimates
almost immediately, such asLM separate. ThePPR separate approach
with fixed L = |S| is often a fair trade-off between time and accuracy, espe-
cially for smooth predictive functions.

6. The number of training observations Ntrain did not significantly affect the
method classes’ overall ordering in our simulation studies. However, individual
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approaches, such as the PPR separate, performed even better when trained
on more training observations.

7. All method classes benefit from having access to multiple CPUs when prop-
erly implemented. For example, the Monte Carlo-based approaches can generate
the samples for different coalitions and test observations on different cores, and
the same when predicting the responses. A separate regression method
can train the individual models in parallel, while a surrogate regression
method can cross-validate the model’s hyperparameters on different cores.

8. For high-dimensional settings, the number of models to fit in the separate
regression class is infeasible. Then, the surrogate regressionmeth-
ods and the VAEAC approach with arbitrary conditioning can be useful. However,
their accuracy will likely also decrease with higher dimensions. In high-
dimensional settings, one can, e.g., group the features into relevant groups (Jullum
et al. 2021) or use approximation strategies to simplify the Shapley value com-
putations, as described in Sect. 2.2.3.

7 Conclusion

In this article, we have discussed a large sample of Monte Carlo integration and
regression-basedmethods used to estimate conditional Shapleyvalues formodel expla-
nation. In agreement with the literature (Covert et al. 2021; Chen et al. 2022), we have
divided the studied methods into six different method classes. For each class, we have
given an overview of the idea, reviewed earlier proposed methods within the class,
and finally proposed and developed several new approaches for most classes. The
existing and novel approaches have been systematically evaluated through a series of
simulation studies with increasing complexity, as such evaluation has until now been
lacking in the field of conditional Shapley values (Chen et al. 2022). We also con-
ducted several experiments on real-world data sets from the UCI Machine Learning
Repository. The ranking of the method classes and approaches differed slightly in the
numerical simulation studies and real-world experiments.

The most accurate Shapley value explanations in the simulation studies were
generally produced by a parametric method with a correctly (or nearly cor-
rectly) assumed data distribution. This is intuitive, as making a correct parametric
assumption is advantageous throughout statistics. However, the true data distri-
bution is seldom known, e.g., for real-world data sets. In the simulation studies
with moderate feature dependence levels, the second-best method class was gen-
erally the generative class with the ctree and VAEAC methods, which
outperformed the independence, empirical, separate regression, and
surrogate regressionmethods. For high feature dependence, the separate
regression methods improved relative to the other classes, particularly the PPR
separatemethod. Using a separate regressionmethodwith the same form
as the predictive model proved beneficial.

In the real-world experiments, the parametric methods fell behind the best
approaches, except for the simplest data set with Gaussian-like structures. In general,
the best approaches in the real-world data set experiments belong to the separate
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regression method class and have the same form as the predictive model. How-
ever, theNN-Olsen surrogatemethod tied the best separate regression
method in one experiment, and the VAEAC approach was marginally more precise in
another experiment. The second-best method class varied for the different data sets,
with all method classes, except theindependence and empirical, taking at least
one second place each.

In addition to the accuracy of the methods, we also investigated the computation
time. The regression-based methods are often slowly trained, but they produce the
Shapley value explanations almost instantaneously. In contrast, theMonte Carlo-based
methods are often faster to train but drastically slower at generating the Shapley value
explanations. Finally, we gave some recommendations and considerations for when
to use the different method classes and approaches.

In further work, one direction is to extend the investigation into higher dimensions
to verify that the tendencies and order of the methods we discovered remain. However,
one would then probably need to sample a subset of the coalitions to cope with the
exponential complexity of Shapley values. In agreement with Chen et al. (2022), one
can also try to determine robust architectures, training procedures, and hyperparam-
eter optimization for the generative and surrogate regression methods,
investigate how non-optimal approaches change the estimated conditional Shapley
values, and finally evaluate bias in estimated conditional Shapley values for data with
known conditional distributions.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10618-024-01016-z.
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Appendix

In Appendix A, we describe implementation details for the methods in the main text.
While we provide more details about the parametric methods in Appendix B.
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Appendix A: implementation details

In this section, we describe implementation details for the methods introduced in
Sect. 3. We use the R-package shapr (Sellereite and Jullum 2019), version 0.2.0, to
compute the Shapley values3. The package computes the Shapley values as the solution
of a weighted least squares problem (Charnes et al. 1988; Lundberg and Lee 2017; Aas
et al. 2021a). More precisely, the solution is given by φ = (ZTWZ)−1ZTWv = Rv.
The Z matrix is a 2M × (M + 1) binary matrix where the first column consists of
1s and the remaining columns are the I (S) representations from Sect. 3.6.1 for all
S ∈ P(M). The W matrix is a 2M × 2M diagonal matrix containing the Shapley
kernelweights k(M, |S|) = (M−1)/(

(M
|S|
)|S|(M−|S|)), while v is a 2M -dimensional

vector containing the estimated contribution functions v̂(S). The S in the latter two
cases resembles the coalition of the corresponding row in Z. The Z andW matrices are
independent of the instance to be explained and are computed by the shapr package,
which sets the infinite Shapley kernel weights k(M, 0) = k(M, M) = ∞ to a large
constant C = 106. When explaining Ntest predictions, we replace v with a 2M × Ntest
matrix V , where column i contains the estimated contribution functions for instance
i .

In Sect. 3.7, we described the time complexity of the three method-specific steps
when computing Shapley value explanations. Here, we also address the method-
independent complexity of setting up and using the Shapley value explanation
framework. The computational complexity is related to computing the Shapley value
explanations as the solution of the weighted least squares problem described above.
The time complexity of computing R with standard schoolbook computations is
O(M22M ), while it is O(MNtest2M ) for the matrix multiplication φ = RV .

The independence, empirical, Gaussian, copula, and ctreemethods
are implemented in the shapr package, and we use default hyperparameter values.
For the other methods, we estimate V and multiply it with R to get the estimated
Shapley values. Olsen et al. (2022) implement the VAEAC approach as an add-on to
the shapr package, and we use the default architecture and hyperparameters. In the
numerical simulation studies in Sect. 4, we train the VAEAC approach for 200 epochs
and use the estimated model parameters at the epoch with the lowest validation error,
where 25% of the data constitutes the validation data. For the more complex real-
world data distributions in Sect. 5, the VAEAC approach needs more training epochs
to learn to model the data distributions properly. For the Abalonecont, Abaloneall,
Diabetes, Wine, and Adult data sets, we let the number of epochs be: 10,000, 40,000,
5000, 10,000, and 200, respectively. Other configurations than the default architecture
and hyperparameters might reduce the number of needed learning epochs. In the
Supplement, we provide VAEAC approaches with other numbers of epochs in the
numerical simulation studies and the real-world data experiments, respectively.

Throughout the article, if not otherwise specified, we use K = 250 Monte Carlo
samples in (3) for the Monte Carlo-based methods, which Olsen et al. (2022) found
to be a fair trade-off between accuracy and computation time. However, recall that

3 From version 1.0.0, the shapr package simplifies its syntax, provides a Python wrapper, and supports
batching of the coalitions to reduce memory consumption and enable parallelizing of the computations.
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the empirical and ctree methods (often) use fewer samples and rather weight
them, as described in Sects. 3.2 and 3.4.1, respectively. The implementation of the
independence approach directly samples the x(k)

S feature values from other obser-
vations in the training data; hence, it needs no training, and it supports mixed data.

For the Burr and GH approaches, we estimate the parameters of the distributions
by maximizing the likelihood function using the Nelder-Mead optimization routine
(Nelder and Mead 1965), with default parameters in the optim function in base R (R
Core Team 2020). Tuning the hyperparameters of the optimization algorithm and/or
using a more advanced fitting procedure might improve the approaches. We run the
optimization procedures until convergence. The number of parameters to estimate in
the Burr and GH distribution is 2M + 1 and 1

2 (M + 1)(M + 4), respectively. The
optimization of the GH method relies on good starting values, which we get from
the ghyp package (Weibel et al. 2022). The ghyp package uses a sophisticated
multi-cycle, expectation, conditional estimation (MCECM) algorithm to estimate the
parameters for another more general parameterization of the GH distribution, which
lacks closed-form expressions for the conditional distributions.

For the separate regression methods, we tune (some of) the hyperparam-
eters of the different methods using 4-fold cross-validation procedures implemented
in the packages, by us, or by using the caret package (Kuhn 2022). The LM
separate approach was fitted using the lm function in the stats package in
base R. We use the mgcv package (Wood 2022), with default parameters, to fit the
GAM separate method. Note that in the mgcv package, the smoothing parame-
ters in the penalized regression splines are selected by generalized cross-validation
during the fitting procedure. The PPR separate method uses the ppr function in
the stats package with default parameters, except the number of terms L , which
we determine by cross-validation. The RF separate approach is based on the
ranger package (Wright and Ziegler 2017). We use 500 decision trees and the
caret package to do cross-validation on mtry (3 options),splitrule (2 options),
and min.node.size (2 options), while we use default values for the remaining
hyperparameters. Finally, the CatBoost separate method uses the CatBoost
algorithm (Prokhorenkova et al. 2018), which is based on gradient-boosted decision
trees, with default parameters (most notably, 1000 treeswith depth 6).We employ early
stopping of the CatBoostmethod if no improvement of the evaluation metric value
was made in 100 iterations. One could employ cross-validation to tune the hyperpa-
rameters, but this would increase the computation time drastically as the CatBoost
algorithm has many hyperparameters. An alternative is to tune only some of them.

For the surrogate regression methods, we use the same packages as
above and tune the same hyperparameters if not otherwise specified. For the RF
surrogate method, we reduced the number of trees from 500 to 200 due to high
computation time. For the CatBoost surrogate approach, we increase the max-
imum number of trees to 10,000, but we still employ the same early stopping regime.

Originally, Frye et al. (2021) let themasking value be−1, as they only consider posi-
tive data, but this is not applicable for unbounded features.We let the value be−5 in the
simulations and real-world experiments in Sects. 4 and 5, respectively, which is a value
not present in the data sets. For the NN-Frye surrogate approach, we use the
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same fully connected neural network and carry out the same cross-validation as in Frye
et al. (2021). That is, depth = 2, width ∈ {128, 256, 512}, batch_size = 256,
and learning_rate ∈ {0.001, 0.0001} in the Adam optimizer (Kingma and Ba
2015). We use 75% of the data to train the networks and the remaining observations as
validation data. We use the network parameters at the epoch with the lowest validation
error as the final model. Frye et al. (2021) use 2000–10,000 training epochs, while we
use num_epochs = 3000 to make the method more time-wise competitive and as
the validation error obtains its minimum long before the last epoch in the simulation
studies. Another alternative is to let num_epochs be arbitrarily large and stop the
training if no improvement has been made to the validation error for a fixed number
of epochs, that is, employing early stopping.

In the NN-Olsen surrogate approach, we use batch normalization layers,
ELU activation functions, and skip connections with summation over each layer in the
network. We carry out similar hyperparameter tuning as the NN-Frye surrogate
approach. That is, depth = 3, width ∈ {32, 64, 128}, num_epochs = 500,
batch_size = 128 (as we duplicate the batch size), and learning_rate ∈
{0.01, 0.001, 0.0001} in the Adam optimizer. Instead of specifying num_epochs,
another option could have been to train the network until a stopping criterion was
met, e.g., no improvement in the validation measure for a specific number of epochs.
We observe relatively small differences between the nine different hyperparameter
choices, and one could thus potentially reduce the training time by a factor of nine by
using width = 64 and learning_rate = 0.001 as default values. The same also
applies to the NN-Frye surrogate approach. The networks are implemented in
torch (Falbel and Luraschi 2022).

In the real-world data experiments in Sect. 5, we omit the cross-validation of the
hyperparameters in the NN surrogate approaches to make them more time-wise
competitive. We let lr = 0.001 and width = 256 in the NN-Frye surrogate
approach, while we use the same learning rate for the NN-Olsen surrogate
method but we let width = 64. The convergence rates of the networks’ valida-
tion errors vary in the different real-world data experiments. Hence, we use different
num_epochs for each experiment. For the Abalonecont, Abaloneall, Diabetes, Wine,
and Adult data sets, we let num_epochs in the NN-Frye surrogate method
be: 40,000, 40,000, 10,000, 40,000, and 3000, respectively. The corresponding val-
ues for the NN-Olsen surrogate method are 20,000, 10,000, 2500, 10,000, and
500. Other configurations than the architecture and hyperparameters set above might
reduce the number of needed learning epochs. In the Supplement, we provide NN
surrogate methods with other numbers of epochs, as a higher num_epochs can
make the methods more precise but at the cost of increased training time.

Appendix B: additional information about the parametric methods

In this section, we elaborate on the copula approach and give a short introduction
to the multivariate Burr and generalized hyperbolic distributions.
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B.1: Copulas

The definition of an M-dimensional copula is a multivariate distribution, C , with uni-
formly distributed marginals U[0, 1]. Sklar’s theorem states that every multivariate
distribution F with marginals F1, F2, . . . , FM can be written as F(x1, . . . , xM ) =
C(F1(x1), . . . , FM (xM )), for some appropriate M-dimensional copula C . In fact,
the copula from the previous equation has the expression C(u1, . . . , uM ) =
F(F−1

1 (u1), . . . , F
−1
M (uM )), where the F−1

j (u j )s are the inverse distribution func-
tions of the marginals. While other copulas may be used, the Gaussian copula has the
benefit that we may use the analytical expressions for the conditionals of the Gaussian
distribution.

The Gaussian copula model used by Aas et al. (2021a) is very flexible with regard
to the marginal distributions but quite restrictive in the dependence structures it can
capture. It can only represent radially symmetric dependence relationships and does
not allow for tail dependence (i.e., the joint occurrence of extreme events has a small
probability). One can use other copulas in the copula approach instead. For exam-
ple, Aas et al. (2021b) use vine copulas, more specifically, a particular type of R-vines
(regular vines) called D-vines (Kurowicka and Cooke 2005) when they estimate con-
ditional Shapley values. Regular vines do not exclude categorical data, but themethods
become more complicated when categorical features are included; hence, Aas et al.
(2021b) exclude them. Zhao and Udell (2020) propose a semi-parametric algorithm
to impute missing values for mixed data sets via a Gaussian copula.

B.2: Burr distribution

The Burr distribution allows for heavy-tailed, skewedmarginals, and nonlinear depen-
dencies, which can be found in real-world data sets (Takahasi 1965). The density of
the M-dimensional Burr distribution is given by

p(x) = �(κ + M)

�(κ)

(
M∏

m=1

bmrm

) ∏M
m=1 x

bm−1
m

(
1 +∑M

m=1 rmx
bm
m

)κ+M
,

for xm > 0. The M-dimensional Burr distribution has 2M + 1 parameters, namely, κ ,
b1, . . . bM , and r1, . . . , rM . Furthermore, the Burr distribution is a compound Weibull
distribution with the gamma distribution as compounder (Takahasi 1965), and it can
also be seen as a special case of the Pareto IV distribution (Yari and Jafari 2006).

Any conditional distribution of the Burr distribution is in itself a Burr distri-
bution (Takahasi 1965). Without loss of generality, assume that the first S < M
features are the unobserved features, then the conditional density p(x1, . . . , xS |xS+1 =
x∗
S+1, . . . , xM = x∗

M ), where x∗ indicates the conditional values, is an S-dimensional

Burr density. The associated parameters are then κ̃, b̃1, . . . , b̃S , and r̃1, . . . , r̃S , where
κ̃ = κ + M − S, while b̃ j = b j and r̃ j = r j

1+∑M
m=S+1 rm (x∗

m )bm
, for all j = 1, 2, . . . , S.
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B.3: generalized hyperbolic distribution

The generalized hyperbolic distribution GH(λ, ω,μ,�,β) is parameterized by an
index parameter λ, concentration parameterω, location vectorμ, dispersion matrix�,
and skewness vectorβ (BrowneandMcNicholas 2015).A randomvariable x isGHdis-
tributed if it can be represented by x = μ+Wβ +√

WU , whereW ∼ GIG(λ, ω, ω),
U ∼ N (0,�) and W is independent of U . GIG is the generalized inverse Gaussian
distribution introduced by Good (1953). The density of the M-dimensional GH is
given by

p(x) =
[
ω + δ(x,μ,�)

ω + βT�−1β

] λ−M/2
2

Kλ−M/2

(√

(ω + δ(x,μ,�))(ω + βT�−1β)

)

(2π)M/2|�|1/2Kλ(ω) exp
{−(x − μ)T�−1β

} ,

where δ(x,μ,�) = (x − μ)T�−1(x − μ) is the squared Mahalanobis distance
between x and μ, Kλ is the modified Bessel function of the third kind with index λ.

Wei et al. (2019) showed that when x is partitioned as (xS , xS), the conditional
distribution xS |xS = x∗

S ∼ GH∗(λS|S , χS|S , φS|S ,μS|S ,�S|S ,βS|S), where

λS|S = λ−|S|/2, χS|S = ω+(x∗
S −μS)T�−1

SS(x∗
S −μS),ψS|S = ω+βT

S�T
SSβS ,

μS|S = μS + �T
SS�−1

SS(x∗
S − μS), �S|S = �SS − �T

SS�−1
SS�SS , and βS|S =

βS − �T
SS�−1

SSβS . Here, the GH∗ indicates that another parameterization of the GH
distribution, proposed by McNeil et al. (2015), is used for the conditional distribution
due to technical reasons:

p(x) =
[
χ + δ(x,μ,�)

ψ + βT�−1β

] λ−M/2
2

×
(ψ/χ)λ/2Kλ−M/2

(√

(χ + δ(x,μ,�))(ψ + βT�−1β)

)

(2π)M/2|�|1/2Kλ(
√

χψ) exp
{−(x − μ)T�−1β

} .
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