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Abstract

We seek to narrow the gap between parametric and nonparametric modelling of stationary time series pro-
cesses. The approach is inspired by recent advances in focused inference and model selection techniques.Our
paper generalises and extends current work by developing a new version of the focused information criterion
(FIC), directly comparing the performance of both parametric and nonparametric time series models. This is
achieved by comparing the mean squared error for estimating a focus parameter under consideration, for each
candidate model. In particular this yields FIC formulae for covariances or correlations at specified lags, for
the probability of reaching a threshold, etc. Suitable weighted average versions, the AFIC, also lead to model
selection strategies for finding the best model for the purpose of estimating e.g. a sequence of correlations.
Keywords: focused inference; model selection; time series modelling; risk estimation.

1. Introduction and summary
The focused information criterion (FIC) was introduced in Claeskens & Hjort (2003) and is based on esti-
mating and comparing the accuracy of individual model-based estimators for a chosen focus parameter. This
focus, say µ, ought to have a clear statistical interpretation across candidate models. For a given candidate
model, µ is then expressed as a function of this model’s parameters. In general, the focus parameter can be
any sufficiently smooth and regular function of the underlying model parameters, e.g. quantiles, regression
coefficients, a specified lagged correlation and various types of predictions and data dependent functions, to
name some; see Hermansen & Hjort (2015) for a more complete list and discussion of valid foci for time series
models.
Suppose there are candidate modelsM1, . . . ,Mk, leading to focus parameter estimates µ̂1, . . . , µ̂k, respectively.
The underlying idea leading to the FIC is to estimate the mean squared error (mse) of µ̂j for each candidate
model and then select the model that achieves the smallest value. The mse in question is rj = E (µ̂j−µtrue)

2 =
Var µ̂j + bias(µ̂j)

2, comprising the variance and the squared bias in relation to the true parameter value
µtrue. Thus the FIC consists of finding ways of assessing, approximating and then estimating the rj for each
candidate model, and the winning model is the one with smallest r̂j . How this may be done depends on
both the candidate models and the focus parameter, as well as on other characteristics of the underlying
situation. The FIC apparatus hence leads to different types of formulae in different setups; see Claeskens &
Hjort (2008, Chs. 5 and 6) for a fuller discussion, illustrations, and generalisations.
Hermansen & Hjort (2015) introduce a FIC for selection among nested parametric models for some classes
of time series processes. The aim of this paper is to motivate an extension of this approach which will jus-
tify comparison and selection among both parametric and nonparametric candidate models. The derivation
follows reasoning similar to the development of Jullum & Hjort (2015), where focused inference and model
selection among parametric and nonparametric models are discussed for independent observations. By in-
cluding a nonparametric candidate among the parametric models, we will in particular be able to detect
whether our parametric models are off-target. The FIC can therefore be seen as an insurance mechanism
against poorly specified parametric candidates. On the other hand, we usually achieve higher precision using
parametric models when these are adequate.
The class of models we consider here are for zero-mean stationary Gaussian time series processes, say {Yt}.
The dependency structure, which in such cases determines the entire model, is completely specified by the



covariance function C(k) = Cov(Yt+k, Yt), defined for all lags k = 0, 1, 2, . . .. By Wold’s theorem, see
e.g. Priestley (1981), a function C(k) is a proper covariance function if and only if there is a distribution G
on [−π, π], symmetric around zero, such that

C(k) =

∫ π

−π
eiωk dG(ω) = 2

∫ π

0

cos(ωk) dG(ω) for k = 0, 1, 2, . . . . (1)

We shall also take this spectral measure G to have a continuous density g, so that C(k) = 2
∫ π
0

cos(ωk)g(ω) dω.
The spectral density can be obtained as the Fourier transform of the covariance function, see e.g. Brillinger
(1975) and Dzhaparidze (1986). It is mathematically convenient to work in the frequency domain. Where
necessary we write Cg to indicate that this is the covariance index by g obtained by (1).
The time series processes considered in Hermansen & Hjort (2015) were assumed to lie between well-defined
narrow and wide models, in a local large-sample framework where the true spectral density ftrue can be
represented as fθ0,γ0+δ/

√
n; this framework causes variances and squared biases to be of the same order

of magnitude O(1/n). In the present paper we sidestep such conditions, however, going instead for direct
assessment and then estimation of variances, squared biases, and hence mean squared errors.
We start out considering focus functions of the type

µ(G, h) =

∫ π

−π
h(ω) dG(ω) = 2

∫ π

0

h(ω)g(ω) dω, (2)

where h is a continuous and bounded function on [−π, π], with potentially a finite number of jump disconti-
nuities. This quite general class includes e.g. the covariance function. This construction allows also studying
specific parts of the spectral density by using indicator functions; see also Gray (2006) for further illustration
of quantities of type (2). Later results, employing also the delta method, will then make it easy to reach FIC
formulae also for smooth functions of such µ(G, h), as correlations, threshold probabilities, etc.
A simple ‘proof of concept’ for focused model selection is presented in Figure 1. It pertains to a situation
where the underlying (true) model is an autoregressive time series of order two with parameters σ = 1.0,
ρ1 = 0.7, ρ2 = −0.6, and of length n = 100. The focus estimands considered are covariances C(k) at lags
0, 1, 2, 3, 4, 5. Five candidate models are examined: That of independence (autoregressive of order zero); the
autoregressive of orders one and two; the moving average of order one; and finally the nonparametric one,
where nothing more is assumed than saying that the series is stationary with a finite variance. The figure
illustrates the crucial point that one and the same model is not necessarily best for all estimation purposes,
and that there is a potential gain by including also the nonparametric alternative alongside parametric ones.
See the figure text for details.

Figure 1: For the situation described above, simulation (with 5000 repetitions) is used to compute root-mse for the
five candidate models, for each of the focus parameters C(k). For ease of comparison we have scaled the root-mse to
the unit interval. Note that since we have included the true model among our candidates, nonparametric estimation
is never the optimal choice; it is however often close and it is the second best choice for lags 1 and 3. For lags 2 and 5,
where the true values are close to zero, the simpler models, like AR(0) and MA(1), are highly successful, by achieving
both low bias and low variance.



2. Estimation and approximations
We start out by investigating the behaviour of the two most common parametric estimation procedures, that
based on maximum likelihood and that based on the Whittle approximation in (5).

2.1. Maximum likelihood estimation outside the model. Let yt
n

= (y1, . . . , yn) be a sample of size n from a
zero mean stationary Gaussian time series process with spectral distribution function G and corresponding
density g. Furthermore, let fθ, with θ ∈ Θ ⊂ Rp for finite p, index an arbitrary parametric candidate. The
corresponding full log-likelihood is `n(fθ) = − 1

2{n log(2π) + log |Σn(fθ)| + yt
n
Σn(fθ)

−1y
n
}, where Σn(fθ) is

the covariance matrix with elements Cfθ (|i − j|) for i, j = 1, . . . , n. Since the class of parametric candidate
models is not assumed to necessarily include the true g, the maximum likelihood estimator does not converge
to a ‘true’ parameter value. Instead it converges to the so-called ‘least false’ parameter value, i.e. θ̂n =
arg maxθ `n(θ)→Pg arg minθ d(g, fθ) = θ0, where

d(g, fθ) = − 1

4π

∫ π

−π

(
log

g(ω)

fθ(ω)
+ 1− g(ω)

fθ(ω)

)
dω = − 1

4π

∫ π

−π
(log g(ω) + 1) dω −R(G, θ), (3)

see Dahlhaus & Wefelmeyer (1996). Moreover,

√
n(θ̂n − θ0)→d J

−1
0 U, where U ∼ Np(0,K0), (4)

with J0 and K0 defined by

J0 = J(g, fθ0) =
1

4π

∫ π

−π

[
∇Ψθ0(ω)∇Ψθ0(ω)tg(ω) +∇2Ψθ0(ω){fθ0(ω)− g(ω)}

]
1

fθ0(ω)
dω

and

K0 = K(g, fθ0) =
1

4π

∫ π

−π
∇Ψθ0(ω)∇Ψθ0(ω)t

[
g(ω)

fθ0(ω)

]2
dω,

where Ψθ(ω) = log fθ(ω) and ∇Ψθ(ω) and ∇2Ψθ(ω) are the vector and matrix of partial derivatives with
respect to θ, see Dahlhaus & Wefelmeyer (1996, Theorem 3.3).

2.2. The Whittle approximation. The Whittle pseudo log-likelihood is an approximation to the full Gaussian
log-likelihood `n. It was originally suggested by P. Whittle in a series of works from the 1950s (cf. Whittle
(1953)), and is defined as

˜̀
n(f) = −n

2

{
log 2π +

1

2π

∫ π

−π
log[2πf(ω)] dω +

1

2π

∫ π

−π

In(ω)

f(ω)
dω

}
, (5)

where In(ω) = (2πn)−1|
∑
t≤n yt exp(iωt)|2 is the periodogram. This approximation is close to the full Gaus-

sian log-likelihood in the sense that `n(f) = ˜̀
n(f) +OPg (1) uniformly in f , see Coursol & Dacunha-Castelle

(1982) or Dzhaparidze (1986) for details and additional discussion. More important here, however, is that

(5) motivates an additional estimation procedure, namely the Whittle estimator θ̃n = arg minθ ˜̀n(fθ). This
alternative estimator is easier to work with in practice (both analytically and numerically) and shares several

properties with maximum likelihood estimator, e.g.
√
n(θ̃n − θ0) achieves the same limit distribution as in

(4), with the same least false parameter value θ0 as defined in relation to (3); see Dahlhaus & Wefelmeyer
(1996) for details. This means that in a large-sample perspective, the maximum likelihood estimator and the
simpler Whittle estimator are equally efficient and essentially interchangeable.

3. Parametric versus nonparametric
We shall now obtain large-sample approximations which can be used to construct estimates for the mse of
the model based estimators for the focus parameter µ. This will in turn lead to FIC formulae.

3.1. How to compare parametric and nonparametric models? Let µ = µ(G) be a focus function, i.e. a
functional mapping of the spectral measure G to a scalar value. Often the collection of parametric candidate
models, which we represent by Fθ, does not include the true G. The question is then which model should we
use – parametric or nonparametric – for estimating the focus µ.



Let µ̂np = µ(Ĝn) be the nonparametric estimate for the true µtrue = µ(G) and assume that
√
n(µ̂np − µtrue)→d N(0, vnp) and

√
n(µ̂pm − µ0)→d N(0, vpm)

for each parametric candidate µ̂pm = µ(Fθ̂n), where µ0 = µ(Fθ0) is the focus function evaluated under the
least false model Fθ0 as discussed in relation to (3). Then, without going into details, the large-sample results
above motivate the following first-order approximations for the mse of the estimated focus parameters:

msenp = 02 + vnp/n = vnp/n and msepm = b2 + vpm/n, (6)

where b = µ0 − µtrue. The remainder of the section will be used to motivate and obtain good estimators for
the mean squared errors in (6) with the class of foci µ(G, h) defined in (2).

3.2. Deriving unbiased risk estimates. In the derivation below, the parametric candidates Fθ will be fitted
using the Whittle estimator θ̃n as defined in (5) and we will also use the periodogram based

G̃n = 2

∫ ω

0

In(u) du (7)

as a canonical estimator for the spectral measure G; see among others Taniguchi (1980). Using the Whittle
estimator in collaboration with (7) results in a convenient simplification of the derivations below; extending
the arguments to full ML estimation should be a straightforward extension by the techniques developed in
Dahlhaus & Wefelmeyer (1996).
This motivates the following nonparametric and parametric estimators for µ(G, h) from (2):

µ̃np =

∫ π

−π
h(ω)In(ω) dω =

1

n
yt
n
Σn(h)y

n
= Xn and µ̃pm =

∫ π

−π
h(ω)fθ̃n(ω) dω.

The following proposition establishes the joint limit distribution for the estimators above (suitably nor-
malised), which in turn will be used to obtain good approximations for their respective mean squared errors.

Proposition 1. Let y1, . . . , yn be realisations from a stationary Gaussian time series model with spectral
density g assumed to be uniformly bounded away from both zero and infinity. Suppose fθ is two times
differentiable with respect to θ and that fθ, ∇fθ and ∇2fθ are continuous and uniformly bounded in both ω
and θ in a neighbourhood of the least false parameter value θ0 as defined above (3). Then( √

n(µ̃np − µtrue)√
n(µ̃pm − µ0)

)
→d

(
X

ctJ(g, fθ0)−1U

)
∼ N2

(
0,

(
vnp vc
vc vpm

))
, (8)

where

vnp = 4π

∫ π

−π
{h(ω)g(ω)}2 dω and vpm = ctJ(g, fθ0)−1K(g, fθ0)J(g, fθ0)−1c,

with J and K as defined below (4), and vc = ctJ(g, fθ0)−1d, where c = ∇µ(fθ0) and

d = Cov(X,U) =

∫ π

−π

∇fθ0(ω)h(ω)g(ω)2

fθ0(ω)2
dω.

Proof. It follows from the results in Dzhaparidze (1986) that θ̃n − θ0 = J(g, θ0)−1Un + oPg (1/
√
n) where

Un = ∇˜̀n(fθ0) = −1

2
{tr(Σn(∇Ψθ0))− yt

n
Σn(∇Ψθ0/fθ)yn}

and Ψθ0 = log fθ0 and ∇Ψθ0 is the vector of partial derivatives. This means that the marginal distribution
and the respective mean and variance are easily found by applying the standard delta method. Moreover,
since Xn = yt

n
Σn(h)y

n
/n and Un are both quadratic forms, the joint limit distribution is readily obtainable

by a Cramér–Wold type of argument; we will not go into details on this here, see Hermansen & Hjort (2014)
for derivations of a similar type. To complete the proof, observe for the covariances that

Cov(Xn, Un) =
2

n
tr{Σn(h)Σn(g)Σn(∇Ψθ/fθ)Σn(g)} →

∫ π

−π

∇fθ0(ω)h(ω)g(ω)2

f(ω)2
dω

from the results in Dzhaparidze (1986) or Dahlhaus & Wefelmeyer (1996, Lemma A.5).



The nonparametric estimator is by construction unbiased in the limit; an estimate for the risk is therefore
easily obtained from the variance formula above. For the parametric candidate, we need in addition an
unbiased estimate for the squared bias. Following Jullum & Hjort (2015) we start with b̃ = µ̃pm − µ̃np as an

initial estimate for b = µ0 − µtrue. Since it follows from (8) that
√
n(̃b− b)→d c

tJ−1U −X ∼ N(0, κ), where

κ = vpm + vnp − 2vc, we have E b̃2 ≈ b2 + κ/n+ o(1/n). This leads to the following mse estimators

FICnp = m̃senp = ṽnp/n and FICpm = m̃sepm = b̃sq + ṽpm/n = max(0, b̃2 − κ̃/n) + ṽpm/n.

With clear-cut estimates of the risk of the nonparametric and parametric models’ estimators of µ, represented
by the above FIC scores, our model selection strategy is as follows: Compute the FIC score for each of the
say m parametric candidate models and for the nonparametric alternative; rank these m + 1 scores; and
select the model and estimator associated with the smallest FIC score. Note that the same FICpm formula
(with different estimates and quantities) is used for all the different parametric candidate models.
In Figure 2 we revisit the lagged covariance estimation problem of the introduction, to see how the FIC
performs compared to the AIC, BIC and always using the nonparametric estimate. Note that the AIC and
BIC tools do not work for the nonparametric model, since there is no likelihood function.

Figure 2: This is a continuation of the illustration in Figure 1. In the right panel we have calculated (using
simulations) the number of times each criterion, i.e. always nonparametric, FIC, AIC and BIC selects the model
that has the theoretical lowest root-mean-squared error. Note that AIC and BIC only selects among the parametric
models. For lag 1 the theoretical root-mse for the autoregressive models are, for all practical purposes, equal to what
obtained by the nonparametric model and all are therefore seen as attaining the smallest root-mse. In the right panel
we have compared (in the same simulations) the obtained root-mse for the same four scenarios. Here we see that the
FIC behaves as intended by selecting (on average) the models that produces the smallest risk.

Although we have concentrated on focus functions µ(G, h) given by (2), our focused model selection strategy
is not restricted to this class, and should work for any focus functions fulfilling (8). Hence, a standard delta
method argument ensures that any continuously differentiable function of a finite set of focus parameters
µ1, . . . , µq all on the form of (2), may be handled by our scheme – provided there is joint convergence for
all individual estimators. For instance, this allows for focus functions like the lag k correlation function
µ = ρ(k) = C(k)/C(0). A further extension of this is to replace (2) by µ◦(g,H) =

∫ π
−πH(g(ω)) dω, where H

is continuous on the (finite) range of g; see among others Taniguchi (1980). In completely general terms, our
results may be generalised to focus functions µ = T (G) for well behaved functionals T mapping the spectral
distribution G to a scalar value. It is also possible to extend the arguments to other parametric estimation
procedures, especially if they are derived as minimisers of the empirical analogue of arg minθ R(G, θ) for R
the model specific part of possibly different divergence measure than in (3), see Dahlhaus & Wefelmeyer
(1996) and Taniguchi (1981) for alternatives.

4. Concluding remarks

A. AFIC. Our discussion has so far been in terms of a given focus parameter µ. In situations where several
focus parameters are considered jointly, say correlations of orders 1 to 5, the FIC machinery can easily



be lifted to one involving a weighted average of FIC scores, the AFIC, with weights reflecting importance
dictated by the statistician.

B. Model averaging. The FIC scores may also be used to combine the most promising estimators into a
model averaged estimator, say µ̂∗ =

∑
models c(Mj)µ̂j , with c(Mj) given higher values for models with good

FIC scores.

C. The conditional FIC. For time series processes several interesting and important foci are naturally related
to predictions, sample size dependent or formulated conditional on past observations, e.g. h-step ahead
predictions but also µ(y1, . . . , ym) = Pr{Yn+1 > α and Yn+2 > α | y1, . . . , ym} for a suitable choice of α. The
dependency on previous data requires a new and extended modelling framework, which in Hermansen &
Hjort (2015, Sections 5 & 6) led to generalisations and also motivated the conditional focused information
criterion (cFIC). These considerations need to be taken properly into account in a complete extension of the
FIC methodology for time series in the framework of selecting among parametric and nonparametric models.

D. Trends and covariates. Methods and results of our paper may be generalised to classes of models of the
type Yt = m(t, β) + xtiγ + εt, with εt a stationary Gaussian time process. These issues, leading to a larger
repertoire of FIC formulae, will be returned to in later work.
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