
Supplement to “Statistical
embedding: Beyond principal
components”
Dag Tjøstheim1, Martin Jullum and Anders Løland

1. PERSISTENCE DIAGRAMS AND SIMPLICAL COMPLEXES

Assume that we observe a sample X1, . . . , Xn drawn from a distribution P supported on a
set S, and let us define the empirical distance function

d̂(x) = min
1≤i≤n

||x−Xi||.

It should be noted that lower level sets L̂ε defined by L̂ε = {x : d̂(x) ≤ ε} are precisely the
union of balls described in Equation (13) in the main paper, i.e.,

L̂ε = {x : d̂(x)≤ ε}= ∪ni=1B(Xi, ε).

The persistence diagram D̂ defined by these lower level sets is an estimate of the underlying
diagram D.

The empirical distance function is often used for defining the persistence diagram of a
data set in computational topology. However, as pointed out by Wasserman (2018), from a
statistical point of view this is a poor choice, as it is highly non-robust. Wasserman points out
several more robust alternatives. One of them is the so called DTM distance introduced by
Chazal, Cohen-Steiner and Mégot (2011) given by

d̂2m(x) =
1

k

k∑
i=1

||x−Xi(x)||2,

where k = [mn] is the largest integer less than or equal to mn and with 0 ≤m ≤ 1 being
a scale parameter. Further, Xj(x) denotes the data after re-ordering them so that ||X1(x)−
x|| ≤ ||X2(x)− x|| ≤ · · · . This means that d̂2m(x) is the average squared distance to the k-
nearest neighbors Other alternative references to a robustified distance measure are given in
Wasserman (2018).

Actually, in more complicated situations, the persistence diagram is not computed directly
from L̂ε, but from so-called simplical complexes. This approach is particularly interesting
since it generalizes the embedding of a point cloud in a graph as described in Sections 3.4
and 3.5 in the main manuscript. We will give a brief description here. Much more details can
be found in Chazal and Michel (2021).

First, recall the definition of a simplex: Given a set X = {X0, . . . ,Xk} ⊂ Rp of k + 1
“affinely independent” (i.e., the vectors (X0,X1, . . .Xk) are linearly independent), the k-
dimensional simplex σ = [X0, . . . ,Xk] spanned by X is the convex hull of X. For instance,
for k = 1 the simplex is simply given by the line from X0 to X1. The points of X are called
the nodes of σ and the simplices spanned by the subsets of X are called the faces of σ. A
geometric simplical complex K in Rp is a collection of simplices such that (i) any face of

Dag Tjøstheim is Professor Emeritus at the Department of Mathematics, University of Bergen,
Bergen, Norway and Professor II at the Norwegian Computing Center, Oslo, Norway (e-mail:
Dag.Tjostheim@uib.no). Martin Jullum is Senior Research Scientist at the Norwegian Computing
Center, Oslo, Norway (e-mail: Martin.Jullum@nr.no). Anders Løland is Research Director at the
Norwegian Computing Center (e-mail: Anders.Loland@nr.no).

1Corresponding author.

1

https://imstat.org/journals-and-publications/statistical-science/
mailto:Dag.Tjostheim@uib.no
mailto:Martin.Jullum@nr.no
mailto:Anders.Loland@nr.no

2

a simplex of K is a simplex of K , (ii) the intersection of any two simplices of K is either
empty or a common face of both.

As seen in Sections 3.4 and 3.5 in the main paper, connecting pairs of nearby data points
by edges leads to the standard notion of a neighboring graph from which the connectivity of
the data can be analyzed and clustering can be obtained, including non-convex situations, as
described in Section 3.4. Using simplical complexes, where simplical complexes of dimen-
sion 1 are graphs, one can go beyond this simple form of connectivity. In fact a central idea in
TDA is to build higher dimensional equivalents of neighboring graphs by not only connecting
pairs but also (k+ 1)-tuples of nearby data points. This enables one to identify new topolog-
ical features such as cycles and voids and their higher dimensional counterparts. Regarding
embedding of networks, as treated in Section 5, such a technique could possibly be used to
discover cycles in networks such as criminal rings in fraud detection, say.

Simplical complexes are mathematical objects that have both topological and algebraic
properties. This makes them especially useful for TDA There are two main examples of
complexes in use. They are the Vietoris-Rips complex and the C̆ech complex. The Vietoris-
Rips complex Vε(X) can be introduced in a metric space (M,d). It is the set of simplices
X = [X0, . . . ,Xk] such that dX(Xi,Xj)≤ ε for all (i, j). The C̆ech complex Cε(X) is defined
as the simplices [X0, . . . ,Xk] such that the k+1 ballsB(Xi, ε) have a nonempty intersection.

These definitions should be compared to the use of ball-coverings in Section 4 of the main
paper and level sets defined in the present subsection. It can in fact be shown that the ho-
mology of L̂ε is the same as the homology of Cε. The homology of Cε can be computed
using basic matrix operations. All relevant computations can be reduced to linear algebra.
This gives a method of computing homology and persistent homology relating the complexes
as ε varies as briefly mentioned in our simple introductory example of chain of circles, or
the more involved example involving Ranunculoids, in Section 4.2 of the main paper (see
Edelsbrunner and Harer (2010)). In fact, it is computationally easier to work out the algebra
for the Vietoris-Rips complex Vε. It can be shown that the persistent homology defined by Vε
approximates the persistent homology defined by Cε.

Given a subset X of a compact metric space (M,d), the families of Vietoris-Rips com-
plexes, {Vε(X)}ε∈R and the family of C̆ech complexes, {Cε(X)}ε∈R are filtrations, that is,
nested families of complexes. As indicated earlier, the parameter ε can be considered as
a data resolution level at which one considers the data set X. For example if X is a point
cloud in Rp, the filtration {Cε} encodes the topology of the whole family of unions of balls
Xε = ∪X∈XB(X,ε) as ε goes from 0 to∞.

As in the example in Section 4.2 of the main paper, the homology of a filtration {Fε}
changes as ε increases: new connected components can appear, existing components can
merge, loops and cavities may appear or be filled. Persistence homology tracks these changes,
identifies the appearing features, and attaches a lifetime to them. The resulting information
can be encoded as a set of intervals, the bar-code, or equivalently, as a multiset of points in R2,
where the coordinates of each point is the start and end point of the corresponding interval.
In Chazal and Michel (2021) a formal definition of bar-code and persistence diagram is given
via the concept of persistence module which again is defined in terms of an indexed family of
vector spaces and a doubly-indexed family of linear maps.

1.1 Persistent landscapes, functional spaces and applications

The space of persistence diagrams is not a function space in the sense that it is not a Hilbert
space. This may make it more difficult to directly apply methods from statistics and machine
learning. For example, the definition of a mean persistence diagram is not obvious and unique
(Chazal and Michel, 2021, p. 28). Further, according to Chazal and Michel (2021, p. 29) the
highly nonlinear nature of diagrams prevents them from being used as a standard feature of
machine learning algorithms. An exception, however, is Obayashi and Hiraoka (2017).

Bubenik (2015) introduced persistence landscapes. The persistence landscape is a collec-
tion of continuous linear functions obtained by transforming the points of the persistence
diagram into tent functions. This function space can be given a Hilbert space structure (in

SUPPLEMENT TO “STATISTICAL EMBEDDING” 3

fact a more general structure of a separable Banach space in Bubenik’s original paper). The
random structure created by X1, . . . ,Xn may then be represented by Hilbert space variables,
and it becomes meaningful to consider means, variances and a central limit theorem. The vec-
tor space structure of persistent landscapes and similar constructions may appear to be more
directly extendable to machine learning, in particular to kernel methods, cf. also Section 3.7
in the main paper, in reproducing kernel Hilbert space (see for instance Reininghaus et al.
(2015), Kusano and Hiraoka (2016) and Carriere and Oudot (2019)). It can safely be stated
that combining TDA and persistence homology with machine learning is becoming an active
research direction with results having potential for unsolved practical problems.

Clearly, the bar codes, the persistence diagrams and Betti numbers can also be used directly
as feature extractors for classification problems. In particular, these have been used for net-
work characterizations in Cartsens and Horadam (2013). Possibly such features can be used
as a supplement to the network embedding and clustering methods presented in Section 5 in
the main paper of this survey.

Connections between persistent homology and deep learning has also started to be ex-
plored. Umeda (2017) has done this in a time series context. Another application to time
series is Ravisshanker and Chen (2019).

For applications to specific problems we refer to references in Wasserman (2018) and
Chazal and Michel (2021). Wasserman discusses briefly applications to the cosmic web, im-
ages and proteins, Chazal and Michel discuss applications to protein binding configurations
and classification of sensor data.

1.2 Statistical inference

A central concept in inference for persistence diagrams is the bottleneck distance. Given
two diagrams C1 and C2, the bottleneck distance is defined by

δ∞(C1,C2) = inf
γ

sup
z∈C1

||z − γ(z)||∞,

where γ ranges over all bijections between C1 and C2. Intuitively, this is like overlaying
the two diagrams and asking how much one has to shift the diagrams to make them the
same (Wasserman, 2018). The practical computation of the bottleneck distance amounts to
the computation of perfect matching in a bipartite graph for which classical algorithms can
be used (Chazal and Michel, 2021).

The bottleneck distance is a natural tool to express stability of persistence diagrams. An
alternative distance measure is the Wasserstein distance. The bottleneck distance is also a
natural tool in statistical inference on persistent landscapes, cf. Chazal et al. (2015).

The (estimated) persistence diagram Ĉ is based on a finite collection of random variables
X1, . . . ,Xn. One might think of a true persistence diagram C as n→∞. A central question
is then whether there is such a thing as consistency, and is it possible to introduce confidence
intervals? Such questions have been considered by Chazal and Michel (2021, Section 5.7; see
especially Section 5.7.4) and is based on the bottleneck distance between Ĉ and C .

For many applications, in particular when the point cloud does not come from a (per-
turbation of) a geometric structure, the persistence diagram will look quite complicated. In
particular, there will be a number of cases where the life time is quite short and consequently
with representative points close to the diagonal. The question then arises whether these points
can be considered as noise and should therefore be eliminated from the diagram. One needs
a concept of statistical significance to make such an evaluation, and again the bottleneck dis-
tance can be used as a tool. When estimating a persistence diagram C with an estimator Ĉ
one may look for a quantile type number ηα such that

(1) P (d∞ ≥ ηα)≤ α,

for α ∈ (0,1). This can be taken as a point of departure for computation of confidence inter-
vals and significance tests.

It is necessary to translate (1) into something that can be computed. This can be done by
the bootstrap as in Chazal, Massart and Michel (2016). Let (X∗1 , . . . ,X

∗
n) be a sample from

4

the empirical measure defined from the observations (X1, . . . ,Xn). Moreover, let Ĉ∗ be the
persistence diagram derived from this sample. One can then take as an estimate of ηα the
quantity η̂α defined by

P [d∞(Ĉ∗, Ĉ)> η̂α|X1, . . . ,Xn] = α,

where it is straightforward to estimate η̂α by Monte Carlo integration. Chazal, Massart and
Michel (2016) have shown that the bootstrap is valid when computing the sub-level sets of a
density estimator. Using the bottleneck bootstrap and given a certain significance level, a band
can be constructed parallel to the diagonal of the persistence diagram, and such that points
in this level are considered as noise. A bootstrap algorithm can also be used to construct
confidence bands for landscapes as shown in Chazal, Massart and Michel (2016).

There are a number of problems of interest for statisticians in TDA. Chazal and Michel
(2021) in particular mentions four topics:

1. Proving consistency and studying the convergence rates of TDA methods.
2. Providing confidence regions for topological features and discussing the significance

of estimated topological quantities.
3. Selecting relevant scales (i.e. selecting ε in the examples discussed above) at which

topological phenomenons should be considered as functions of observed data.
4. Dealing with outliers and providing robust methods for TDA.

In addition, one may want to introduce the block bootstrap to take better care of dependence
structures There are also recent contributions to hypothesis testing, Moon and Lazar (2020),
sufficient statistics, Curry, Mukherjee and Turner (2018), and Bayesian statistics for topolog-
ical data analysis, Maroulas, Nasrin and Obello (2020).

2. EMBEDDING AND WORD FEATURE REPRESENTATION OF A LANGUAGE TEXT

Sections 5.2 and 5.3 of the main paper describe the importance of embedding of networks
and its use in feature extraction, in clustering, characterization and classification for ultra-
large data sets. It was pointed out in Section 5.3 that a main methodology for this is the
Skip-Gram procedure which was developed in the context of word embedding for a natural
language. The purpose of the present section is twofold. First, language processing is of con-
siderable independent interest. Second, it provides more details on the Skip-Gram procedure,
its background and its use. Although this material is couched in terms of language analysis,
we believe that when read in conjunction with Section 5.3 of the main paper, it will also
provide added insight into the details of network embedding.

2.1 A few basic facts of neural nets

The Skip-Gram procedure is based on a neural network with a single hidden layer, and we
therefore include a brief summary of neural networks in this supplement.

Neural networks are used for a number of problems in prediction, classification and clus-
tering. The developments perhaps stagnated somewhat in the early seventies, but received
renewed interest the last decades, following a massive increase in computational power.
Currently, there is an intense activity involving among other things deep learning, where
some remarkable results have been obtained. See Schmidhuber (2015) for a relatively recent
overview.

Assume that we are given an n-vector x as input. In a neural network approach one is in-
terested in transforming x via linear combinations of its components and possibly a nonlinear
transformation of these linear combinations. This transformation constitutes what is called a
hidden layer. Then this might be sent through a new transformation of the same type to create
a new hidden layer and eventually to an output layer y which should be as close as possible
to a target vector t. If there is more than one hidden layer, it is said to be a deep network, its
analysis being a base for so-called deep learning. In this supplement, mainly dealing with the
background of the Skip-Gram, only the case of one hidden layer will be treated, that, in our
context, will be formed by a linear transformation.

SUPPLEMENT TO “STATISTICAL EMBEDDING” 5

Given the input layer, the first step in forming the hidden layer is to form linear combina-
tions

(2) hi =

n∑
j=1

wijxj ,

where i= 1, . . . ,m. Note that implicitly, there may be a constant term by taking x1, say, equal
to 1. (This is sometimes termed the bias term of the linear combination.)

In the case of one hidden layer, the output layer is given by

yj =

m∑
i=1

w′ijhi,

for j = 1, . . . , q. In subsequent applications for language and network embedding models
q = dim(y) = dim(x) = n.

In a classification problem, yj may be associated with an unnormalized probability for a
class j, which in Section 5.3 of the main paper is the appropriate neighborhood of a node vj
in a network. In such cases the output layer is also transformed. A common transformation is
the so-called softmax function given by

(3) softmax(yj) =
exp(yj)∑n
i=1 exp(yi)

.

This is recognized (if there is no hidden layer) as the multinomial logistic regression model
which is a standard tool in classification.

Using a training set, the coefficients (or weights) wij and w′ij are determined by a penalty
function measuring the distance between the output y and the target vector t, for example
measured by the loss function E = ||y − t||2. In a classification and clustering problem the
training set consists of input vectors x belonging to known classes i (known words in the
vocabulary in the text). The target vector is a so-called “one hot” vector having 1 at the
component j for the given target word and zeros elsewhere. The weights are adjusted such that
the output vector is as close as possible to this vector, which means that the softmax function
should be maximized for this particular component and ideally exp(yi)≈ 0 for i 6= j.

The error function is evaluated for each of the samples coming in as inputs, and the gradient
of the error function with respect to y is evaluated with the weights being re-computed and
updated in the direction of the gradient by stochastic gradient descent.

The weights w′ij for the output layer is computed first and then wij by the chain differen-
tiation rule using so-called back propagation. Details are given in e.g. the appendix of Rong
(2016). Schematically this may be represented by

w
(new)
ij =w

(old)
ij − ε ∂E

∂wij

and similarly for w′ij . Initial values for the weights can be chosen by drawing from a set of
uniform variables. Below the updating scheme will be illustrated on word representation of
natural languages, which next can be applied to embedding of networks.

2.2 Word feature representation of natural languages

Consider a natural language text. We start with a set of input vectors xi, i = 1, . . . , n,
where n is the number of words in the vocabulary of the text, and xi represents word i in
the vocabulary. Each vector is of dimension n, where xi has a one in position i of the vector
and zeros elsewhere (“one-hot” encoded vector). Let m be the dimension of the desired word
embedding feature representation. The dimension may be quite large. Common choices are in
the range 100−1000. Let the one-hot vector for the wordwi, word number i in the vocabulary,
be xi. Further, consider a n×m weight matrix W. Define the m-dimensional hidden units
hi, i= 1, . . . ,m (without a nonlinear transformation) by

(4) hi = WTxi
.
= vTwi

,

6

which is essentially copying the m-dimensional ith row of W to hi. The vector vwi
is the

input word representation vector for word number i in the vocabulary, or the feature vector
fi of the word wi . This means that the link (activation) function of the hidden layer units
is simply linear. The weights, i.e., the vector word representation can then be learned by the
neural network given appropriate targets and a penalty function.

An obvious question is whether a nonlinear transformation is needed. Bengio et al. (2003),
in their pioneering paper suggest an added nonlinearity, whereas the approach of Mikolov
et al. (2013a,b) is entirely linear, but using the softmax transformation henceforth. The latter
papers also have some other ingredients which have made them extremely influential.

An essential feature of the papers by Mikolov et al. (2013a,b) and related papers is that
they have found clever approximations to simplify and speed up the calculations of Bengio
et al. (2003).

2.3 The Mikolov et al. approach: word2vec

We have already presented the input linear representation of word vectors as rows of the
weight matrix W, see (4). The output layer should consist of conditional probabilities of
words in the vocabulary as in Bengio et al. (2003), but Mikolov et al. has a purely linear
transformation to the output layer prior to the softmax transformation.

As a further simplification we assume that we have a window passing over a given text
with the window consisting of just two words wt,wt−1 in position t and t − 1 of the text.
Here, wt is the target word of the text wO , wt−1 is the input word wI , and the conditional
probability P (wt|wt−1) can also be written P (wO|wI). This means that there is only one
context word wI for the output word, whereas in the case of Bengio et al. (2003) there were
l − 1 context words. (Note that in Skip-Gram, and the use of it in network embedding, the
context words are more naturally being thought of as target words belonging to the output.)
To describe the transition from the hidden layer to the output layer we introduce a new m×n
dimensional weight matrix W′ = {w′ij}. Let v′wj

be the jth column of the matrix W′ (it has
dimensionm). It is the output vector representation of word number j in the vocabulary. Then
the n-dimensional output vector is defined by

y = (W′)Th,

where h= vwI
. Component yj is given by

(5) yj = (v′wj
)Th, j = 1, . . . , n.

To obtain the posterior distribution one uses softmax as defined in (3),

(6) P (wj |wI)
.
= uj =

exp(yj)∑n
i=1 exp(yi)

,

where now uj is the transformed output of the jth unit in the output layer. By substitution,
one obtains

(7) P (wj |wI) =
exp
(

(v′wj
)T vwI

)
∑n

i=1 exp
(
w′i)

T vwI

) .
It should be noted that one gets two distinct word representations vw and v′w for each word w
in the vocabulary, one input and one output word vector. The output vector is the relevant one
in the sense that the context relations are baked into it. Since the system is completely linear,
there are no extra parameters to be learned from the network, “just” the matrices W and W′.

The network is trained by stochastic gradient descent as in Bengio et al. (2003) and most
other neural network applications. Given the input word wI and the output word wO , one is
interested in maximizing the conditional probability P (wO|wI); i.e., finding the index j = j?

and the corresponding probability uj in the output layer so that, using (6),

(8) maxuj = maxP (wO|wI) or max loguj = yj? − log

n∑
i=1

exp(yi).

SUPPLEMENT TO “STATISTICAL EMBEDDING” 7

By taking derivatives one gets the update equation

(w′ij)
(new) = (w′ij)

(old) − ηejhi,

or

(9) (v′wj
)(new) = (v′wj

)(old) − ηejhi.

for j = 1, . . . , n, where η > 0 is the learning rate and ej = uj − tj with tj = 1(j = j?). One
has to go through every word in the vocabulary, check its output probability uj , and compare
uj with its targeted output, either 0 or 1.

Going through the same exercise for the transition between the input and the hidden layer,
one obtains (see Rong (2016) for details) for the update equation if wI =wi

v(new)
wi

= v(old)
wi

− ηF,

where F is the vector whose ith component, using back propagation, is given by
∑n

j=1 ejw
′
ij .

Recall that vTwI
is a row of W, the “input word vector” of the only context word wI = wi,

and it is the only row of W whose derivative is non-zero. All the other rows will remain
unchanged after this iteration, since their derivatives are zero.

The generalization from a one word context to a context with several words is quite
straightforward in the Mikolov et al. (2013a,b) set-up. They distinguish between two ways
of doing this, the CBOW and the Skip-Gram model.

Traditional text classification is based solely on frequencies in the text of words in the
vocabulary. This is the bag of words (BOW) approach. Mikolov et al. (2013a,b) take context
into account resulting in a continuous bag of words (CBOW). We are then essentially back
to the situation in Bengio et al. (2003) where there are C = l− 1 context words and we want
to maximize P (wO|w1, . . . ,wC), but Mikolov et al. assume linearity in the concatenated C
words in such a way that the concatenated word vector corresponding to [w1, . . . ,wC] is
simply given by the average 1

C (vw1
+ · · ·+ vwC

) of the individual pairwise word vectors. The
hidden layer is then given by

h=
1

C
WT (x1 + x2 + · · ·xC)

=
1

C
(vw1

+ · · ·+ vwC
).(10)

This is the CBOW assumption. With this assumption one is more or less back to the one-
context word updates. The loss function can be written (cf. (5) and (8)),

E =− logP (wO|w1, · · ·wC)

=−yj? + log

n∑
i=1

exp(yi) =−(v′wO
)Th+ log

n∑
i=1

exp((v′wi
)Th),(11)

which is the same as (8), the objective of the one-word context model, except that h is differ-
ent, being defined as in (10) instead of in (4). This leads to an update equation for the output
words which is identical to (9), whereas the update equation for input words has to be updated
separately for every word wc, c= 1, . . . ,C , namely

v(new)
wc

= v(old)
wc

− 1

C
ηF,

where F is defined as before.

2.4 The Skip-Gram model

The Skip-Gram model is in a sense the opposite of the CBOW model, and this
is the situation considered in the network embedding in Section 5.3. It is also differ-
ent from the Bengio model. For a window centered at the word wI , the window con-
tains C/2 (with C being an even number) words before the center word wI and C/2

8

word after the center word, so that in the notation of Bengio et al. (2003) the win-
dow consists of the words [wt+C/2, . . . ,wt, . . . ,wt−C/2]. Sliding the window, the objec-
tive is to predict each of the C context words (i.e. maximize the conditional probability)
[wt+C/2, . . . ,wt+1,wt−1, . . . ,wt−C/2] given the input word wI =wt. Here, conditional inde-
pendence is assumed, so that the conditional probability for each context word is maximized
separately.

For the input word representation the derivation in the two word case is the same as the
present situation for the input word and with the same definition of the hidden layer h, so that
we still have hI = vTwI

. Instead of outputting one (multinomial) distribution, we are outputting
C (multinomial) distributions. But, importantly, each output is computed using the same ma-
trix W′ mapping the hidden layer into the output layer. (This means that the sequencing of
the context words does not matter, only which words are there in the window). Moreover,

P (wc,j |wI) =
exp(yc,j)∑n
i=1 exp(yi)

,

where wc,j , c= 1, . . . ,C , j = 1, . . . , n, and where the index j is referring to the number in the
vocabulary of the word wO,c. Further for h= vwi

,

yc,j = (v′wj
)Th,

for c = 1, . . . ,C , where v′wj
is the output vector for the jth word wj in the vocabulary, and

also v′wj
is taken from the jth column of weight matrix W′ transforming the hidden layer to

the output layer.
The derivations of the parameter update equations are similar to the one-word context.

Assuming conditional independence, the loss function in (11) is changed to

E =− logP (wO,1, . . . ,wO,C |wI) =−
C∑
c=1

(v′wc
)T vwI

+C log

n∑
i=1

exp{(v′wi
)T vwI

}.

The updating equations can be derived by taking derivatives similarly to the CBOW case, and
we refer to Rong (2016) for details.

In spite of the relatively simple linear structure of CBOW and Skip-Gram, it makes for
some quite astonishing properties that goes beyond simple syntactic regularities. This is
obtained using just very simple algebraic operations in the word representation space Rm,
such that for example the embedded word vector(“King”)-word vector(“Man")+word vec-
tor(“Woman”) has a high probability of having the word vector(“Queen”) as its closest word
vector, as measured by cosine distance in word feature space Rm. Several similar examples
are given in Mikolov et al. (2013a,b), and they have also examined quite systematically the
capabilities of CBOW and Skip-Gram compared to other word representation routines in
solving such tasks.

2.5 The computational issue

For all of the word models presented so far, there is a computational issue. As the size of
the vocabulary and the size of the training text set increase, they are heavy to update. For
the two-word, the CBOW and the Skip-Gram models there are two vector representations
for each word in the vocabulary: the input vector vw and the output vector v′w. Learning the
input vectors is cheap, but learning the output vectors is expensive. From the update equations
(6), (7), (8) and (9) it is seen that to update v′w for each training instance, one has to iterate
through every word wj in the vocabulary, compute yj , the prediction error ej and finally use
the prediction error to update the output vector v′wj

.
Such kind of computations makes it difficult to scale up to large vocabularies or large

training corpora. The obvious solution to circumvent this problem is to limit the number of
output vectors that must be updated per training instance. There are two main approaches for
doing this, hierarchical softmax and negative sampling. Both approaches optimize only the
computation for updates for output vectors.

SUPPLEMENT TO “STATISTICAL EMBEDDING” 9

Hierarchical softmax is an efficient way of computing softmax (Morin and Bengio, 2005;
Mnih and Hinton, 2008). With this method the frequency of words appearing in texts is taken
into account. In hierarchical softmax the list of words from word 1 to word n is replaced
by a binary Huffman encoded tree with the n words appearing at the leaves (outer branches)
of the tree. The probability of the occurrence of a word given an input word is computed
from a probability path from the root of the tree to the given word. This reduces the number
of operations in an update from n to log2 n, e.g. for n = 1 million = 106, the number of
operations are reduced to 6 log2 10≈ 20. We refer to Morin and Bengio (2005) and Mnih and
Hinton (2008) for a detailed description of hierarchical softmax.

2.6 Negative sampling

The idea of negative sampling is far more straightforward than hierarchical softmax. It is
sampling-based, and for each updating instance, only a sample of output vectors are used.
This seems to be an, perhaps the, essential idea that makes Skip-Gram work so well.

Obviously the output words; i.e. wO in CBOW and each of the words wO,c for c= 1, . . . ,C
in the Skip-Gram procedure should be included in the updating sample. They represent the
ground truth and are termed positive samples. In addition, a certain number k of word vectors
(noise or negative samples) are updated, such that k = 5 − 20 are useful for small training
sets, whereas for large training sets, k = 2− 5 may be sufficient (Mikolov et al., 2013b). The
sampling is carried out via a probability mechanism where each word is sampled according
to its frequency f(wi) in the text. In addition, Mikolov et al. recommend from empirical
experience that each word is given a weight equal to its frequency (word count) raised to the
3/4 power. The probability for selecting a word (vector) is just its weight divided by the sum
of weights for all words, i.e.,

Pn(wi) =
f(wi)

3/4∑n
j=1 f(wj)3/4

.

In addition, in word2vec, instead of using the loss functions (8) and (11) constructed from
multinomial distributions, the authors argue that the following simplified training objective is
capable of producing high-quality word embeddings:

(12) E =− logσ((v′wO
)Th)−

∑
wj∈Wneg

logσ(−(v′wj
)Th),

where σ(u) is the logistic function given by σ(u) = 1/(1 + exp(−u)) andWneg is the col-
lection of negative samples for the given update. Further, wO is the output word (the positive
sample), v′wO

is the output vector; h is the value of the hidden layer with h= 1
C

∑C
c=1 vwc

in
the CBOW model and h= vwI

in the Skip-Gram model. Note that Mikolov et al. write (12)
as

E =− logσ((v′wO
)Th)−

k∑
i=1

Ewi∼Pn(w) logσ(−(v′wi
)Th).

To obtain the update equations we again use the chain rule of differentiation. First, the deriva-
tive of E with respect to (v′wj

)Th is computed as

∂E

∂((v′wj
)Th)

=

{
σ((v′wj

)Th)− 1 if wj =wO
σ((v′wj

)Th) if wj ∈Wneg

}
,

which results in the derivative being equal to σ((v′wj
)Th)− tj where tj is the label of word

wj such that tj = 1 if wj is a positive sample, and 0 otherwise. Next, we take the derivative
of E with regard to the output vector of the word wj ,

∂E

∂v′wj

=
∂E

∂((v′wj
)Th)

∂((v′wj
)Th)

∂v′wj

=
(
σ((v′wj

)Th)− tj
)
h.

10

This results in the following update equation for the output vector

v′ (new)
wj

= v′ (old)
wj

− ε
(
σ((v′wj

)Th)− tj
)
h,

which only needs to be applied towj ∈ {wO}∪Wneg instead of every word in the vocabulary.
This equation can be used both for CBOW and the Skip-Gram model. For the Skip-Gram
model, the equation has to be applied for one context word at a time.

To back-propagate the error to the hidden layer and thus update the input vectors of words,
it is necessary to take the derivative of E with regard to the hidden layer’s output, obtaining

∂E

∂h
=

∑
wj∈{wO}∪Wneg

∂E

∂(v′wj
)Th

∂(v′wj
)Th

∂h

=
∑

wj∈{wO}∪Wneg

(
σ((v′wj

)Th)− tj
)
v′wj

.
= F.

Using this, one can obtain update equations for the input vectors of the CBOW and Skip-Gram
models.

2.7 Some results

There are a number of results for variously structured text data sets in Mikolov et al.
(2013a,b), where it is seen that CBOW and Skip-Gram perform well compared to other meth-
ods and that with negative sampling or hierarchical softmax the methods can be applied to
vocabularies in the millions and text samples in the billions of words. Choices of parameters
such as the number of context words (not much greater than 10), sample size of negative
samples, and dimension of word vectors are discussed. Further, there are several experiments
analyzing the sensitivity of the results on applications to empirical data. The Skip-Gram is a
slightly heuristic method when combined with negative sampling (such as a sudden shift from
one objective function to another one, raising the empirical frequencies to an exponent of 3/4).
The authors justify this from the empirical results obtained, which are quite impressive. There
are several papers attempting to simplify and complement the rather brief description in the
papers by Mikolov et al. (2013a,b), and trying to give it a firmer mathematical basis. We have
found Rong (2016) useful. The shift of objective function is sought explained in Goldberger
and Levy (2014).

There are extensions to classification of text extending the context of word-vector to the
concept of paragraph-vector in Le and Mikolov (2014), but it is very concisely written. There
is also a paper on machine translation by Mikolov, Le and Sutskever (2013). Software is easily
available for all of the algorithms described in this section.

3. A MORE INVOLVED ILLUSTRATING EXAMPLE

Fig. 1 contains more challenging variants of the graphs in Fig. 5 in the main paper. The ho-
mogeneous graph in Fig. 1a is simulated from a stochastic block model with 2 communities,
100 nodes, average node degree d= 10 and ratio of between-community edges over within-
community edges β = 0.75, i.e. it is generated from the same model as Fig. 5a in the paper,
except that β has increased form 0.4 to 0.75. As for Fig. 5 in the main paper, embeddings with
dimension 64 were computed using node2vec with 30 nodes in each walk with 200 walks per
node, and a word2vec window length of 10 where all words are included. The accompanying
2-dimensional visualizations of the embeddings are done with PCA and t-SNE, UMAP and
LargeVis, all with different tuning parameters.

Compared to Fig. 5a in the main paper, the PCA is far inferior to the three other embedded
visualizations for this more involved example. Similarly to Fig. 5b in the main paper, the het-
erogeneous graph in Fig. 1b is simulated from three stochastic block models (three subgraphs
a, b and c, each with 2 communities:

Graph a: 30 nodes, average node degree d = 7, ratio of between-community edges over
within-community edges β = 0.1

SUPPLEMENT TO “STATISTICAL EMBEDDING” 11

community 1 2

Graph

largeVis(n=15,p=5) largeVis(n=15,p=50) largeVis(n=5,p=5) largeVis(n=5,p=50)

umap(n=25,m=0.01) umap(n=25,m=0.75) umap(n=5,m=0.01) umap(n=5,m=0.75)

-2 -1 0 1 2 -2 0 2 -2 -1 0 1 2 -4 -2 0 2

-4 -2 0 2 4 -10 -5 0 5 10 -5.0 -2.5 0.0 2.5 -20 -10 0 10

-10

0

10

20

-4

-2

0

2

4

-10

0

-5.0

-2.5

0.0

2.5

5.0

-2

-1

0

1

2

0

10

-10

-5

0

5

10

-4

-2

0

2

-5

0

5

10

15

pca tsne(p=10) tsne(p=25) tsne(p=5)

0 5 10 15 20 -15 -10 -5 0 5 -10 -5 0 5 10 -5 0 5 10 15

-2

0

2

4

-1

0

1

2

-10

0

x

y

2D visualizations

org_embedding

0.562prop community
 correct

pca

0.58prop majority
 vote correct

tsne(p=10)

0.472

tsne(p=25)

0.42

tsne(p=5)

0.48

umap(n=25,m=0.01)

0.45

umap(n=25,m=0.75)

0.536

umap(n=5,m=0.01)

0.51

umap(n=5,m=0.75)

0.518

largeVis(n=15,p=5)

0.58

largeVis(n=15,p=50)

0.508

largeVis(n=5,p=5)

0.57

largeVis(n=5,p=50)

0.522

0.56

0.504

0.54

0.512

0.55

0.554

0.6

0.572

0.62

0.484

0.47

0.542

0.58

Classification scores

(a) Homogeneous graph from the stochastic block model.

community 1 2

Graph

largeVis(n=15,p=5) largeVis(n=15,p=50) largeVis(n=5,p=5) largeVis(n=5,p=50)

umap(n=25,m=0.01) umap(n=25,m=0.75) umap(n=5,m=0.01) umap(n=5,m=0.75)

-2.5 0.0 2.5 -5.0 -2.5 0.0 2.5 5.0 0 5 -5 0 5

-3 0 3 -20 0 20 -6 -3 0 3 6 -20 -10 0 10 20
-20

0

20

-10

-5

0

5

-25

0

25

-3

0

3

-10

-5

0

5

-20

-10

0

10

20

-20

-10

0

10

-2.5

0.0

2.5

-10

0

pca tsne(p=10) tsne(p=25) tsne(p=5)

-10 0 10 -10 0 10 20 -10 0 10 20 30 -10 0

-6

-3

0

3

6

-2

0

2

-10

-5

0

5

10

x

y

2D visualizations

org_embedding

0.912prop community
 correct

pca

0.95prop majority
 vote correct

tsne(p=10)

0.876

tsne(p=25)

0.9

tsne(p=5)

0.912

umap(n=25,m=0.01)

0.94

umap(n=25,m=0.75)

0.926

umap(n=5,m=0.01)

0.95

umap(n=5,m=0.75)

0.904

largeVis(n=15,p=5)

0.94

largeVis(n=15,p=50)

0.934

largeVis(n=5,p=5)

0.96

largeVis(n=5,p=50)

0.892

0.96

0.894

0.94

0.902

0.94

0.872

0.93

0.882

0.93

0.894

0.93

0.886

0.92

Classification scores

(b) Heterogeneous graph from a combination of three stochastic block models.

Fig 1: Graphs, visualizations and classification results with a k-nearest neighbors algorithm
with k = 5.

Graph b: 30 nodes, average node degree d = 15, ratio of between-community edges over
within-community edges β = 0.2

12

Graph c: 40 nodes, average node degree d = 7, ratio of between-community edges over
within-community edges β = 0.1, and an unbalanced community proportion; a proba-
bility of 3/4 for community 1 and a probability of 1/4 for community 2

To link graphs a, b and c, some random edges are added between nodes from the same com-
munity1. The results are somewhat similar to those of Fig. 5b of the main paper. Again, PCA
is inferior to the three other methods, but it is closer than in Fig. 1b.

REFERENCES

BENGIO, Y., DUCHARME, R., VINCENT, P. and JAUVIN, C. (2003). A neural probabilistic language model.
Journal of Machine Learning Research 3 1137-1155.

BUBENIK, P. (2015). Statistical topological data analysis using persistence landscapes. Journal of Machine Learn-
ing Research 16 77-102.

CARRIERE, M. and OUDOT, S. (2019). Sliced Wasserstein kernel for persistence diagrams. arXiv 1803.07961v1.
CARTSENS, C. J. and HORADAM, K. J. (2013). Persistent homology of collaboration networks. Mathematical

Problems in Engineering 1-7.
CHAZAL, F., COHEN-STEINER, D. and MÉGOT, Q. (2011). Geometric inference for probability measures. Foun-

dations of Computational Mathematics 11 733-751.
CHAZAL, F., MASSART, P. and MICHEL, B. (2016). Rates of convergence for robust geometric inference. Elec-

tronic Journal of Statistics 10 2243-2286.
CHAZAL, F. and MICHEL, B. (2021). An introduction to topological data analysis: fundamental and practical

aspects for data scientists. Frontiers in Artificial Intelligence: Machine Learning and Artificial Intelligence 4
1-28.

CHAZAL, F., FASY, B. T., LECCI, F., RINALDO, A. and WASSERMAN, L. (2015). Stochastic convergence of
persistence landscapes and silhouettes. Journal of Computational Geometry 6 140-161.

CURRY, J., MUKHERJEE, S. and TURNER, K. (2018). How many directions determine a shape and other suffi-
ciency results for two topological transforms. arXiv:1805.09782.

EDELSBRUNNER, H. and HARER, J. (2010). Computational Topology: An Introduction. American Mathematical
Society.

GOLDBERGER, Y. and LEVY, O. (2014). word2vec explained: Deriving Mikolov et al.’s negative-sampling word-
embedding method. arXiv: 1402.3722v.1.

KUSANO, G. and HIRAOKA, Y. (2016). Persistence weighted Gaussian kernel for topological data analysis. Pro-
ceedings of the 33rd International Conference on Machine Learning, New York.

LE, Q. and MIKOLOV, T. (2014). Distributed representations of sentences and documents. arXiv:1405.4053v2.
MAROULAS, V., NASRIN, F. and OBELLO, C. (2020). A Bayesian framework for persistent homology. SIAM

Journal of Mathematical Sciences 2.
MIKOLOV, T., LE, V. and SUTSKEVER, I. (2013). Exploiting similarities among languages for machine transla-

tion. arXiv:1309.4168.
MIKOLOV, T., CHEN, K., CORRADO, G. and DEAN, J. (2013a). Efficient estimation of word representations in

vector space. CoRR, abs/1301,3781.
MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. and DEAN, J. (2013b). Distributed representation

of words and phrases and their composability. In Advances in Neural Information Processing Systems 26:
Proceedings Annual 27th Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, USA.

MNIH, A. and HINTON, G. (2008). A scalable hierarchical distributed language model. NIPS Proceedings 2008.
MOON, C. and LAZAR, N. A. (2020). Hypothesis testing for shapes using vectorized persistence diagrams.

arXiv:2006.0n46.
MORIN, F. and BENGIO, Y. (2005). Hierarchical probabilistic neural network language model. AISTATS.
OBAYASHI, I. and HIRAOKA, Y. (2017). Persistence diagrams with linear machine learning models. arXiv preprint

1706.10082.
RAVISSHANKER, N. and CHEN, R. (2019). Topological data analysis (TDA) for time series. arXiv:

1909.10604v1.
REININGHAUS, J., HUBER, S., BAUER, U. and KWITT, R. (2015). A stable multi-scale kernel for topological

machine learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
RONG, X. (2016). word2vec parameter learning explained. arXiv:1411.2738v4.
SCHMIDHUBER, J. (2015). Deep learning in neural networks: An overview. Neural Networks 61 85-117.
UMEDA, Y. (2017). Time series classification via topological data analysis. Transactions of the Japanese society

for Artificial Intelligence 32 1-12.
WASSERMAN, L. (2018). Topological data analysis. Annual Review of Statistics and its Applications 5 501-532.

1For each pair of nodes between a pair of graphs, say Graph a and c, a new link is randomly sampled with a
probability of 0.01, and links connecting two nodes from the same community are kept.

	Persistence diagrams and simplical complexes
	Persistent landscapes, functional spaces and applications
	Statistical inference

	Embedding and word feature representation of a language text
	A few basic facts of neural nets
	Word feature representation of natural languages
	The miko:chen:corr:dean:2013a approach: word2vec
	The Skip-Gram model
	The computational issue
	Negative sampling
	Some results

	 A more involved illustrating example
	References

