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Bayesian AVO inversion to rock properties using a local 
neighborhood in a spatial prior model

Abstract
The spatial structure of the subsurface is an important 

factor when interpreting seismic data. The Bayesian methodol-
ogy is a valuable tool for integrating these spatial relations in 
the inversion process as it merges the information together and 
assesses the uncertainty of the model. In the everyday use of 
the Bayesian methodology, however, the computational cost 
is a challenge. We describe a new approach that utilizes a local 
neighborhood to include the spatial constraints and assess the 
uncertainties in the inversion using fast and parallelizable 
computations. The approach is applicable for both discrete 
lithology-fluid prediction and estimation of rock properties, 
such as porosity and saturation.

Introduction
Mapping rock properties such as lithology type, pore fluid, 

porosity, and saturation from seismic prestack amplitudes is a 
nonunique and unstable inverse problem. Luckily, the seismic 
data is not the only source of information about the subsurface. 
Geologic zonation, petrophysical properties, and rock-physics 
models provide additional insight, which helps limit the options. 
The general setting of AVO inversion is illustrated in Figure 1. 
The top arrows describe standard forward modeling, i.e., the 
rock-physics model giving the link between rock properties and 
elastic parameters and the geophysical model, which then gives 
the AVO gathers. The lower set of arrows in Figure 1 illustrates 
the AVO inversion. To solve the rock properties, it is common to 
use a two-step approach. First, an elastic inversion is performed, 
and then the inverted elastic properties are mapped into rock 
properties by evaluating one location at a time. The problem with 
this approach is that it loses track of the spatial structure when 
interpreting the rock properties, e.g., placing samples of oil sand 
directly above brine sand.

The Bayesian methodology is an excellent framework for 
merging multiple sources of information to gain a unified in-
terpretation. In the Bayesian approach, all general knowledge 
is quantified in a joint, spatially coupled prior distribution. This 
prior distribution describes the multiparameter relations between 
different rock properties and elastic parameters, as well as the 
spatial structure of the problem. The spatial structure defines 
features such as the consistency in geologic sequences, ordering 
of fluids, the extent of geologic features, and the degree of 
continuity in geologic events. The probability model is con-
structed using the top set of arrows in Figure 1. Initially, a prior 
distribution for the rock properties is derived through petrophysi-
cal analysis of nearby or analog well logs. The rock physics is 
defined either based on a theoretical model or by empirical rela-
tions. The top right arrow illustrates the geophysical model, 
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which provides the link to AVO data. In the Bayesian framework, 
this link is denoted as the likelihood, and the relation is typically 
derived in a well-tie analysis.

A great advantage of the Bayesian approach is that even 
though the probability model is built according to the arrows 
on top, it is possible to swap point of view and assess the prob-
ability distribution along the arrows below the boxes to perform 
elastic inversion (e.g., Buland and Omre, 2003), rock-physics 
inversion (e.g., Avseth et al., 2005), or direct inversion to rock 
properties (e.g., Jullum and Kolbjørnsen, 2016). Any Bayesian 
approach is, by definition, a one-step approach since it assesses 
the conditional distribution of the target parameter given the 
data. In the Bayesian formalism, these conditional distributions 
are denoted as the posterior distributions and represent our 
updated knowledge of the subsurface model. Computing the 
full spatially coupled posterior distribution for large-scale inverse 
problems is an overwhelming task, and the standard Bayesian 
approach of Markov-chain Monte Carlo (McMC) simulations 
becomes too time-consuming.

To resolve this, one option is to evaluate the Bayesian uncertainties 
pointwise by considering one location at the time (Buland et al., 
2008). This approach enables a consistent integration of prior informa-
tion and an assessment of the uncertainties in both the geo- and 
rock-physical model. However, due to the pointwise assessment, the 
approach loses track of the spatial structure and experiences some of 
the same weaknesses as the two-step approach.

Another option is to compute the maximum posterior solution, 
which provides the optimal merge between the different sources 
of information (see, e.g., Kemper and Gunning, 2014). The weakness 
of this approach is that it does not address the question of nonu-
niqueness in the inversion. There are an uncountable number of 
alternative earth models that are almost as plausible as the optimum; 
some of these might have a completely different set of properties. 
For instance, a thin layer of oil-saturated sand can give a similar 

1Lundin Norway.
2Statoil ASA.
3Norsk Regnesentral.
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Figure 1. Framework for AVO inversion.
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signature as a slightly thicker layer of brine-saturated sand, or a 
reservoir filled with low-saturation gas might give an AVO signature 
very similar to high saturation. In such cases, it is of great value for 
the risk assessment to use a method that fully acknowledges the 
ambiguity in the solution to the inverse problem.

We propose a new approach that addresses the issue of 
nonuniqueness at the same time as it preserves a spatial structure 
and bypasses the problems of high-dimensional posterior dis-
tributions. Rather than trying to express the full joint posterior 
distribution, we focus on a small subset of properties and compute 
the posterior distribution for these. This subset is typically a set 
of rock parameters in nearby cells. We might ask for the prob-
ability of oil sand in one particular subsurface location; the joint 
probability of oil sand in two neighboring cells; the porosity and 
saturation in a subsurface location; or the porosity and saturation 
in neighboring cells. For such focused problems, it is sometimes 
possible to obtain adequate approximations of the posterior 
distribution by solving a small inverse problem on a local neigh-
borhood. Thus, rather than handling one large coupled system, 
one might obtain satisfactory answers by solving many small 
inverse problems independently. Below, we discuss this local-
neighborhood approach by showing the details in a synthetic 
example. We also show the results of two cases where this ap-
proach has been used on real data: to predict sand bodies at the 
Statfjord field and for mapping the spatial distribution of CO2 
in the Sleipner injection project.

The local-neighborhood approach for integrating 
spatial structure

In the local-neighborhood approach, we extract the data in a 
region around the target location and evaluate how likely it is that 
these data represent a given a scenario for the property in the 
target location. The formal computations for lithology-fluid predic-
tion are given in Kolbjørnsen et al. (2008) and, for continuous 
properties such as porosity and saturation, in Jullum and Kolb-
jørnsen (2016). The key to the local-neighborhood approach is 
that the analysis includes details of the spatial relation to “nearby” 
locations. To follow, we outline the computations for the case of 
lithology and fluid prediction.

To illustrate the methodology, consider the task of lithology-
fluid prediction in a simple case where the options are shale (S), 
brine sand (B), and oil sand (O). A spatial model is constructed 
on a grid with a vertical sampling interval of 4 ms. The sequences 
of lithology-fluid classes are defined as a Markov chain (Larsen 
et al., 2006; Kemper and Gunning, 2014) using the transition 
probabilities listed in Table 1. To understand the transition prob-
ability, consider the first row in the table, i.e., shale. From this 
row, we can read that if a given cell in the grid is shale, then the 
cell directly below will be shale in 95 out of 100 cases. The chances 
for brine sand and oil sand are 3% and 2%, respectively. The 
following two rows state the probabilities for the cases with brine 
sand and oil sand on top.

The transition probabilities imply a set of prior probabilities 
of the lithology-fluid classes, which are given in Table 2. The 
mapping from rock properties to elastic parameters, shown as the 
top left arrow in Figure 1, is represented by the probability dis-
tributions of the elastic properties for each lithology-fluid class. 
For simplicity, we only give the properties for AI in Table 2, but 

the full spatial prior distribution for elastic parameters requires 
the pointwise relation between AI, VP /VS ratio, and density, as 
well as the spatial dependency of these properties for neighboring 
cells with the same lithology fluid class.

To include the spatial context in the analysis, consider the 
probability of the lithology-fluid class in two neighboring cells. 
In this simple case, there are a total of eight scenarios: S-S, 
B-S, O-S, S-B, B-B, O-B, S-O, and O-O. The option B-O is 
omitted in the list of scenarios as this corresponds to brine 
directly above oil, which is considered unphysical in a well-
segregated reservoir. This can also be seen in the transition 
probabilities in Table 1 where the brine-sand-to-oil-sand 
transition has probability zero.

If we know that there is a specific scenario in a neighborhood, 
then the spatial dependency causes this to influence the distribu-
tion of elastic properties around this event. Figure 2 shows how 
the mean and variability of acoustic impedance is influenced 

Shale Brine sand Oil sand
Probability for lithology 
fluid class

0.85 0.10 0.05

Acoustic impedance, mean 
(g/ccm × km/s)

6.9 6.6 6.2

AI P10-P90 range 
(g/ccm × km/s)

6.8–7.0 6.5–6.7 6.1–6.3

Shale Brine sand Oil sand
Shale (S) 0.95 0.03 0.02

Brine sand (B) 0.30 0.70 0.00

Oil sand (O) 0.20 0.10 0.70

Table 2. Prior probability distribution for acoustic impedance in 
example.

Table 1. Transition probabilities in example. Transitions from lithology 
fluid class on top (row) to the lithology-fluid class below (column).

Figure 2. The mean and variability of AI in a region around a 
lithology-fluid event. The mean response (solid line) and P10-P90 
uncertainty limits (dotted line) for the eight scenarios.
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above and below the two specified cells for the eight possible 
scenarios. Close to the event, the eight scenarios are very dif-
ferent; farther away, the influence of the scenario is gradually 
reduced. At the top and bottom, there is no effect. The S-S event 
has the least dramatic effect, whereas the S-O event shows a 
strong contrast. A low level of acoustic impedance is not expected 
to be kept for a long period when going away from oil sand or 
brine sand. This is an effect of the spatial structure, i.e., the 
transition probabilities in Table 1. The probability of 0.7 for an 
oil-sand-to-oil-sand transition corresponds to an average thick-
ness of the oil sands of about 13 ms. This is best seen in the 
distribution for acoustic impedance for the O-O event, in which 
the level of the acoustic impedance jumps rapidly back to the 
base level on both sides.

For each spatial model corresponding to a lithology-fluid 
scenario in Figure 2, we can compute the expected seismic 
response and its uncertainty. Figure 3 displays these spatial 
models describing the seismic signatures of all the lithology-
fluid scenarios.

The likelihood of a local lithology-fluid combination is ob-
tained by comparing the seismic response extracted in the neigh-
borhood to the seismic signatures in Figure 3. Scenarios that 
display a signature similar to the observed response will get an 
increased probability, whereas a bad match decreases the probabil-
ity. The detailed expressions are given in the references above. 
Through the local-neighborhood approach, we have obtained the 
probability of the eight different scenarios for neighboring cells 
in one location. If we are interested in the posterior probability 
of oil sand in the top cell, this can be computed by summing the 
probabilities for events with oil sand in the top cell, i.e., O-S, 
O-O, and O-B. By shifting the data window, we can compute 
the probability for these eight scenarios in each location sliding 
down the trace and obtain the probability for oil sand in each loca-
tion. It is also possible to compute the oil probability in the lower 
cell in each event to get an alternative prediction. However, the 
strength of the approach is that when the posterior probability of 

the joint event is computed, it also defines the posterior transition 
probabilities, which can be used to build a spatial model. The 
constructed spatial model is not the true spatial posterior distribu-
tion but rather a first-order approximation. To improve the ap-
proximation of the posterior, it is possible to use higher-order 
Markov chains. The probability of higher-order transitions can 
be found by increasing the size of the lithology-fluid event; i.e., 
rather than considering events of the type S-S, one would consider 
events of type S-S-S-S-S.

In synthetic examples, it is always possible to list all alterna-
tive scenarios; in real situations, the case is more complex as it 
is possible that neither of the listed scenarios provides an adequate 
fit. To investigate this, it is common to introduce an additional 
scenario, which is denoted as an undefined event. The undefined 
event represents a base model, which is parsimonious and has 
less spatial structure than what is imposed in the Bayesian model. 
If this model is assigned a high probability in the posterior, this 
should be a warning sign that there are problems with the statisti-
cal model. Such an undefined rock can be modeled with inde-
pendent elastic parameters with wide spread.

The local-neighborhood approach is applicable to any setting 
in which it is relevant to perform an AVO inversion to rock 
properties. Examples of problematic situations are when the 
lithologies are poorly understood in a region, lack of well tie 
gives too large an uncertainty of the scale of the seismic wavelet, 
or imperfections in the processing gives data quality that is 
too poor.

In principle, there is no limit to how many lithology-fluid 
classes this approach can handle. In fact, the approach has also 
been developed for continuous variables. In a generic imple-
mentation where the focus is on the discrete predictions, the 
limiting factor is the number of lithology configurations that 
are considered within a window. This might be equally depen-
dent on the spatial structure as the number of lithology-fluid 
combinations. For instance, consider three lithologies within 
a window of length five. In the general case, there are 243 
possible configurations, but if we impose a strict ordering, only 
21 options remain.

The methodology has a potential to separate lithologies that 
are acoustically overlapping but have differences in the spatial 
dependencies. If two similar lithologies have clear differences 
in sequence stratigraphic ordering, this might be obvious. If the 
spatial structure only differs in the extent of the geologic features, 
then the separation is weaker. If two lithologies are identical in 
every aspect, the relative probability of these lithologies will not 
change from the prior to the posterior, but the probability of 
these will be scaled together toward the other alternatives.

Synthetic example
The model setup in the previous section is tested for a 

double-wedge model where a sand wedge is embedded in a 
shale background. The top of the wedge is saturated with oil; 
the lower part is saturated with brine. Figure 4 shows the data 
and a comparison with the results of a pointwise inversion 
method (Buland et al., 2008). The differences are evident when 
comparing the acoustic impedances. Even in this case with a 
high signal-to-noise ratio, the pointwise approach creates a 

Figure 3. Seismic signature of transitions. The mean response (solid 
line) and P10-P90 uncertainty limits (dotted line) for all pairs of 
lithology-fluid combinations.
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smoothing effect at the edge, and the level of the inversion is 
lost inside the thick part of the sand. Turning attention to the 
predicted oil-sand probabilities for the pointwise approach, 
we see that the probability of oil sand drops when the level of 
the acoustic impedance drops; thus, the flaws in the inverted 
acoustic impedance transfer to imperfections in the lithology-
fluid prediction. Drawing on this observation, it would be 
tempting to say that the good match in acoustic impedance for 
the local-neighborhood approach provides the excellent predic-
tion of the lithology-fluid class. This is, however, not a correct 
assessment. It is the spatial model of the lithology-fluid classes 
that enables the good match for the local-neighborhood ap-
proach; thus, the match for the acoustic impedance is caused 
by the good prediction of the lithology-fluid class.

To quantify the benefit of the spatial model in the presence of 
noise, we test the two methodologies on synthetic data generated 
from the prior distribution. The signal-to-noise ratio in the synthetic 
data is about three. Two measures are used to evaluate the results. 
The average probability filters out all cells of a given lithology-fluid 
class and computes the average probability of this given class in the 

selected cells. The classification quality is 
obtained by counting how often a lithol-
ogy-fluid class is predicted correctly when 
assigned to the most probable lithology-
fluid class. The fit is summarized in 
Table 3. As seen from the table, the spatial 
model increases the quality of the average 
prediction of sand and the classification 
significantly.

Case example of lithology 
prediction

The Statfjord gas and oil field, located 
in the North Sea at the border between 
the United Kingdom and Norway, has 
been in production since 1979. The water 
depth is about 150 m, and the reservoir 
is at a depth of 2500–3000 m in Middle 
Jurassic Brent deltaic and Late Triassic 
to Early Jurassic Statfjord fluvial sand-
stones. The reservoir level at the east flank 
of the Statfjord Field consists of several 
thin layers, many below the tuning thick-
ness. This makes it difficult to achieve a 
detailed mapping of the reservoir sands 
using standard interpretation methodol-
ogy. The vertical ordering of the zonation 
is well known, as are the rock properties 
of the lithologies in the region. Thus, it 
is of interest to include this information 
when mapping the reservoir sands. 

A spatial model that constrains the 
ordering of the geologic events is built 
using a Markov process prior. A typical 
feature of this process is that transitions 
from an older to a younger zone are 

prohibited, and the variability of the elastic parameters within 
each zone is well constrained. The case and the results are illus-
trated in Figure 5. The inversion of multiple angle stacks was 
performed using both a pointwise and a local-neighborhood 
approach. From the figure, it is clear that the local-neighborhood 
approach gives a clearer separation of the sands, whereas in the 
pointwise approach these sands are smoothed together. The inver-
sion was performed before well B was drilled. One of the objectives 
with the inversion was to investigate the thickness of the shale 
between the two sands. If the shale were thick, it would be ad-
vantageous to drill the well with two sections. The local-neigh-
borhood inversion predicted that the shale observed in well A 
would be much thinner in B, and that was confirmed by the well. 

In Figure 5, the green well marker is the top of the shale, and 
the yellow marker is the base of the shale, showing excellent match 
between the inversion and the well result. The local neighborhood 
can also be used to estimate the confidence in the results with 
respect to the extent of the sand, i.e., the uncertainty of zone 
boundaries. This is important information when the results are 
brought forward to geomodels and uncertainty workflows.

Average probability (%) Percentage correct classification (%)

Prior Standard
Local 
neigh-

borhood
Prior Standard

Local 
neighbor-

hood

Shale 85 93 96 100 99 99

Brine-sand 10 39 55     0 42 61

Oil-sand  5 52 63     0 57 68

Table 3: Comparison of prediction quality for the pointwise and the local-neighborhood approach.

Figure 4. Wedge example. (a) Seismic AVO data, near (left), mid (middle), far (right). (b) Acoustic 
impedance of the synthetic (left), the pointwise inversion (middle), and local-neighborhood inver-
sion (right). (c) Oil-sand probability of synthetic (left), the pointwise inversion (middle), and local-
neighborhood inversion (right).
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Case example of property prediction
The Sleipner field is located in the North Sea, about 250 km 

west of Stavanger. The field produces natural gas and condensate, 
which is rich in CO2. At the topside, CO2 is removed from the 
produced gas and injected back into the Utsira formation. The 
injection started in 1996. The Utsira formation is located at a 
depth of about 1000 m and contains thin layers of shale within a 
background of high-porosity loose sand. When injected into the 
Utsira formation, the CO2 is trapped beneath the thin layers of 
shale. To monitor the spatial distribution of CO2, it is desired to 
invert the CO2 saturation from time-lapse seismic. Since the thin 
layers of high CO2 saturation are below seismic resolution, there 
is a tradeoff between the thickness of the layers and the CO2 
saturation, which cannot be easily interpreted from a standard 
inversion. A key to understanding the spatial model for the satura-
tion is the understanding of the CO2 flow. Prior to CO2 injection, 
the rock is saturated with brine, while, at monitoring time, some 
locations have been reached by a CO2 plume. In these locations, 
the saturation is high since the CO2 does not flow at low satura-
tions. The distribution of CO2 saturation at monitor time is, 
therefore, a mixture of a probability being zero for locations not 
reached by any plume, and a skewed distribution with weight on 
high saturations for locations within a plume. This type of mixed 
distribution can be modeled using a normal score transform of a 
correlated Gaussian random field. When mapping the saturations 
further into the rock-physics model, the properties of the mixture 
of CO2 and brine within the Utsira formation are modeled using 
a patchy mixture of the fluids. Other details of the rock-physics 
model correspond to those given in Jullum and Kolbjørnsen (2016). 

The nature of CO2 implies stronger 4D effects of the fluid substitu-
tion than what is the standard for situations with brine, oil, and 
gas. In particular, the change in velocity is much stronger. Flooding 
a cell with CO2 only allows for a reduction in velocity and density, 
which in turn is a strong restriction for the spatial change.

The local-neighborhood approach was implemented for the 
continuous parameter case using difference seismic. Figure 6 il-
lustrates the elements of the inversion and the result based on 
inversion of differences in three angle stacks. (The seismic am-
plitudes are aligned using rms and pushdown data before the 4D 
difference is computed.) In the cross-sections, the average satura-
tions are displayed, but underlying this is the full posterior dis-
tribution of the saturation in each location. In the vertical profile, 
this distribution is illustrated by percentiles (P10-P50-P90), in 
addition to the mean. The computational efficiency of the approach 
far exceeds an McMC approach; a standard implementation of 
an McMC algorithm used several days to achieve a convergent 
distribution for a vertical profile, while this local approach reached 
results within seconds.

Conclusion
The spatial structure is important when performing an AVO 

inversion. It adds to the full understanding of the seismic response, 
supplements information from petrophysics and rock physics, and 
improves the inversion result.

Using the local-neighborhood approach, we show that it is not 
necessary to incorporate all data in a global model in order to benefit 
from the information in the spatial model. An analysis on a local 
scale gives interesting results that in turn can be further combined 

to derive properties on a larger scale. The 
local-neighborhood approach makes it 
possible to evaluate posterior uncertainty 
in a spatial model without resorting to 
time-consuming McMC algorithms.

In lithology and fluid prediction, 
the fluid ordering and the sequence 
stratigraphic information give particu-
larly large contributions when combined 
with the rock-physics distributions. It 
is not always easy to anticipate how the 
joint information contributes, as there 
are a multitude of options which are 
evaluated and weighted against each 
other. In the example of property evalu-
ation, it is possible to analyze the com-
plex dependencies introduced by re-
stricting the changes in the elastic 
properties to be zero or negative. 
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Figure 5. Statfjord example. (a) Rock-physics model and seismic amplitudes. (b) The posterior 
probability in the local-neighborhood approach is compared with the probabilities from the prior 
and the posterior using a pointwise approach.
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Figure 6. Seismic difference data, rock-physics model, and inversion results for the Sleipner CO2 injection case. The seismic amplitudes are 
scaled such that the peak value of the wavelets is identical for all angles.
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