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Preface

This thesis comprises the work conducted during three years as a PhD student at the Depart-

ment of Mathematics at the University of Oslo (UiO). I will be looking back at these years as an

enjoyable phase of my life, in which I learned a lot. The period has also been tough, though –

possibly even tougher than I expected it to be. With the finished thesis in my hand, there is how-

ever no doubt it was worth it. Still, I have to agree with the author Joseph Epstein who noted that

it is a lot better to have written, than to actually be writing. The final product constituting my

PhD thesis is inarguably positively correlated with the original project description, although the

ρ is far from one. Through these years I have been working with methodology within a broad

range of fields across the science of statistics. Among them are approximate Bayesian infer-

ence, asymptotic theory, Bayesian statistics, copulae, density estimation, frequentist statistics,

functional differentiation, Gaussian distribution theory, geostatistics, inverse problems, Markov

chain Monte Carlo (MCMC), model averaging, model selection, spatial statistics, stochastic

process theory, survival analysis, time series modelling – and I even had to learn a little bit of

geophysics, petrophysics and rock physics. I do by no means claim to master all these subjects,

but I have learned a fair amount about all of them, and for that I feel incredibly lucky.

Upon completing this thesis, I am deeply indebted to my two supervisors Nils Lid Hjort and

Odd Kolbjørnsen. I am truly grateful for how you inspired me, and the eagerness you showed

while working with the various projects. I will sincerely like to thank you both for that. You also

supported me and made it possible for me to spend the autumn of 2014 at Stanford University,

visiting Paul Switzer at the Department of Statistics. Paul was an outstanding host during

some incredible months over there – our delightful academic and non-academic discussions

will not be easily forgotten. Being founded by Statistics for Innovation (SFI2), a centre for

research-based innovation, I was lucky enough to be awarded with two offices in Oslo; one at

the campus at Blindern and one at the Norwegian Computing Center (NR) at Forskningsparken.

Without even being employed at NR, I was very well taken care of and included in the SAND

group. I am thankful for that additional dimension and opportunity to learn, and for being

exposed to the weekly dose of Thursday-buns – that will be missed! I would also like to thank

all my colleagues, both at the statistics group at UiO and the SAND group at NR. Special

thanks go to my ‘roommates’ Marie at NR and Reinaldo at UiO for all our inviting discussions

and fascinating conversations, and to Gudmund Horn Hermansen for co-authoring one of the

papers in the thesis. Finally, I would like to thank my friends, family, and ‘family-in-law’

for filling my life with joy – especially my wonderful Elin for putting up with me, supporting

and understanding me, even though I know you really wished I was rather spending those late

evenings and weekends with you.

Oslo, December 2015

Martin Jullum
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1 Introduction

Due to the pervasive technological developments the last couple of decades, the modern society

is overwhelmed with information or data of various types and forms. Parallel to this, analysis of

data keeps spreading to new industries and sciences, which are eager to learn and gain scientific

data-based insight. As a consequence, the complexities of models and analytical methods have

increased rapidly in attempts to extract new knowledge from the data. The scientific challenges

one currently faces are therefore somewhat different from those typically encountered only a

few decades ago. Back then, the data were smaller and the incentives for pushing the limit of

model complexity where not as strong as today. The new challenges concern both collection and

storing of data, but perhaps more importantly, how to extract the interesting features from the

data. Universal statistical approaches will in many settings be too general to capture and exploit

the important features of the data. Such specific statistical challenges rather call for specialised,

focused methodology which is specifically tuned towards certain inference tasks, for which

scrutiny is considered valuable. Further, despite recent computational advances, computational

handling of large amounts of data and complex models remains a bottleneck. Thus, some kind of

scientific simplification, approximation, or intelligent elimination of redundancy, is sometimes

required to facilitate computationally feasible data analysis.

This thesis explores two topics related to specifically targeted statistical methodology, where

asymptotic theory and other statistical rationale are utilised for approximation purposes. More

precisely, new focused methodology for topics within statistical model selection (Papers I-III)

and approximate Bayesian inversion (Paper VI), have been developed. Despite both being

pieces of the puzzle of the new statistical frontier, statistical model selection and approximate

Bayesian inversion may come across as two fairly different topics. Firstly, the former is mainly

a frequentist problem, while the latter is fully Bayesian. Secondly, model selection is essential

in the final stage of inference – once alternative statistical models are described and fitted, and

one needs to decide which of the alternative conclusions that should be trusted. In approximate

Bayesian inversion, on the other hand, all efforts are used to get an idea of the features that

caused the observed data. Thirdly, a partly unspecified semi-/nonparametric candidate model

plays a key role in Papers I-III, while the Bayesian framework in Paper IV is fully specified.

The four papers also deal with quite different types of data: (I) The simplest type of data, where

the observations are independent, fully observed and have the same distribution (i.i.d. data);

(II) partly observed data where the distribution of the observations may depend on covariate

values (censored survival or event history data with covariates); (III) data consisting of repeated

observations of a process evolving over time (time series data); and (IV) high dimensional,

highly correlated, and noisy application specific geophysical measurement data, typically being

processed by specialists before they are presented to the statistician.

In view of the specific scientific problems being addressed, the four papers comprising this the-

sis appear to span quite broadly. They are however more closely connected in a more general
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1. INTRODUCTION

context, as methodological contributions to the statistical science fundamentally governed by

being (A) focused, and (B) based on careful statistical approximations. In terms of (A), all

projects are in some sense focused towards a particular pre-specified task defined as the ulti-

mate goal of analysis. In terms of (B), both the model selection projects and the approximate

inversion project concern finding the right amount of structure – i.e. to what degree should one

approximate? These running themes will be elaborated more upon in Section 6, once all con-

cepts and contributions of the papers have been thoroughly presented. Note however, already

at this point, the following general remark related to (B): When modelling a data generating

process by a (parametric) statistical model, one is in practice simplifying or approximating a

true unknown data generating process. Apart possibly from a few cases, like quantities within

physics having an exact Gaussian distribution, statistical models are not exact. Still, statistical

models can give insight and precise knowledge from data. Some assign this characteristic to the

perhaps overly simplified quote of George Box: “All models are wrong, but some are useful.”

Having an unusual strong interest for maps myself, I personally prefer an analogue between

models and maps. Maps are two-dimensional simplifications of the real world, but a map of the

world is not wrong just because one’s backyard are not to be found there – or as John Michael

Steele states regarding the same analogue: “If I say that a map is wrong, it means that a building

is misnamed, or the direction of a one-way street is mislabelled. I never expected my map to

recreate all of physical reality, and I only feel ripped off if my map does not correctly answer

the questions that it claims to answer. My maps of Philadelphia are useful. Moreover, except

for a few that are out-of-date, they are not wrong.”

The two main aims of the thesis concern development of fundamentally new statistical method-

ology. The aims are:

• To bridge the gap between the use of semi-/nonparametric statistical modelling proce-

dures and fully parametric alternatives by developing model selection procedures for

comparing these fundamentally different models – a challenge which has not been prop-

erly addressed in the literature before.

• To develop computationally efficient, yet sufficiently precise, methodology for handling

Bayesian inversion problems within the geosciences – whose earlier proposed solutions

are either too rough and inaccurate, or too slow for real large-scale applications.

The remainder of the thesis is structured as follows: Section 2 introduces parametric and

nonparametric modelling approaches for fully observed independent observations, and within

survival- and time series analysis. Section 3 gives an introduction to model selection for para-

metric models, discussing also the difficulties of including semi- and nonparametric models.

Section 4 introduces the data and the problems commonly dealt with in the geosciences, in

addition to the inverse problem. A brief survey of existing methodology for conducting approx-

imate Bayesian inference is also presented. Section 5 consists of summaries of each of the four

papers constituting this thesis. Finally, Section 6 gives pointers to further work, summarises the

higher level contribution of the thesis, and discusses a few selected topics in greater depth.
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2 Parametric and nonparametric
modelling and asymptotics

There are roughly speaking two main approaches to performing statistical modelling of an un-

known distribution G: Parametrics and nonparametrics. A parametric modelling approach is

characterised by having a model space restricted to a family of (cumulative) distributions Fθ in-

dexed and described completely by a finite dimensional parameter θ, which is estimated based

on the data. The precise family is typically chosen for reasons of simplicity, tradition, prior

knowledge, computational efficiency or eased interpretation. The approach involves two steps:

(a) deciding upon a parametric family of distributions Fθ and (b) estimating the parameter θ.

While part (a) naturally depends on the application and data available, part (b) is methodolog-

ically standardised. That is, the same type of estimation procedures are typically used inde-

pendently of the type of application and available data. This is one of the main advantages

of parametric modelling approaches, in addition to the natural interpretations which they often

carry with them.

A nonparametric modelling approach may, despite its name, be thought of as a parametric mod-

elling approach where the θ-parameter is infinite dimensional. In this regard, the nonparametric

model has an infinite number of parameters rather than none. The somewhat counterintuitive

term ‘nonparametric’ stems merely from the fact that in practice, no parameters are being es-

timated. The approach is in some sense distribution free and does not restrict the space of

available models to the extent that parametric approaches do, even though certain restrictions

may be imposed in practice. In contrast to the parametric modelling approach, the unstructured

nature of the nonparametric modelling approach imposes procedures restricted to certain data

types and settings. The underlying ideas of the nonparametric methods are however often con-

ceptually alike, even for fundamentally different data types. The main idea is to let the data

speak for themselves. Freedom and insurance against misspecification are the main advantages

of the nonparametric modelling approach.

2.1 Fully observed independent observations

Independent identically distributed data are possibly the simplest data type for which statistical

inference is performed. A collection of observations Y1, . . . , Yn are then assumed to stem from

a common unknown (cumulative) distribution G, having density or probability mass function g.

This distribution may either be modelled parametrically by F
˜θn

= F (·; θ̃n) for a data dependent

fitted value θ̃n of the p-dimensional parameter θ; or nonparametrically by some G̃n.

3



2. PARAMETRIC AND NONPARAMETRIC MODELLING AND ASYMPTOTICS

2.1.1 Parametric

The by far most frequently applied procedure for specifying θ̃n in the parametric modelling

setting, is that of maximum likelihood. The maximum likelihood estimator θ̃n = θ̂, developed

and largely popularised by R.A. Fisher (Aldrich, 1997) in the 1910s, is defined as

θ̂ =argmax
θ

Ln(θ) = argmax
θ

�n(θ), (2.1)

where Ln(θ) =
∏n

i=1 f(Yi; θ) is the likelihood and �n(θ) = logLn(θ) =
∑n

i=1 log f(Yi; θ) is

the log-likelihood. If the unknown distribution G lies within the parametric family Fθ, then

there exists a true value θtrue of θ, and the parametric model is said to be correct. The classical

textbook result is then that

θ̂ →p θtrue and
√
n(θ̂ − θtrue) →d N(0, J(θtrue)

−1) as n → ∞, (2.2)

where J(θ) = −E[∂2f(Yi; θ)/{∂θ∂θt}] is the well-known Fisher information matrix. This re-

sults is rather restrictive, however, as G is seldom within the parametric family Fθ. Nonetheless,

a similar asymptotic result due to White (1982) holds also when the parametric class is misspec-

ified. Of course, then no θtrue exists; instead a so-called least false parameter value θ0 takes its

place. This least false parameter value is defined as the value of θ that minimises the Kullback–

Leibler divergence (Kullback & Leibler, 1951) from g to the family fθ. For continuous densities

this is defined as

KL(g, fθ) =

∫
g(y) log

g(y)

f(y; θ)
dy =

∫
g(y) log g(y) dy −

∫
g(y) log f(y; θ) dy. (2.3)

With this definition of θ0 and additional rather mild regularity conditions (see e.g. White (1982))

the result in (2.2) generalises to

θ̂ →p θ0 and
√
n(θ̂ − θ0) →d N(0, J(θ0)

−1K(θ0)J(θ0)
−1), (2.4)

where K(θ) = Var{∂f(Yi; θ)/∂θ}. This result allows for model robust inference with para-

metric models. One may for instance establish confidence intervals for functions of θ with the

correct asymptotic coverage even when the assumed parametric distribution is incorrect.

Although the maximum likelihood approach is the most popular method for estimating θ due to

its intuitive interpretation and favourable properties, there exist several other procedures. The

more general concept of M-estimators generalises maximum likelihood estimation, see e.g. van

der Vaart (2000, Ch. 5). The method of moments, dating all the way back to Pearson (1895), is

different in spirit and typically easier to handle analytically. With the computational power of

modern times, the incentives for using this simpler estimator are however weakened compared

to the theoretically superior maximum likelihood and M-estimation procedures. The framework

of generalised method of moments (Hansen, 1982) may be viewed as a generalisation of the

method of moments, and (in some sense) also maximum likelihood and M-estimation (Imbens,

2002). The method does not require a full likelihood, but only a set of moment conditions

related to θ. This makes it suitable for estimation in certain semiparametric models, particularly
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2.1. Fully observed independent observations

within economy and finance where models are often specified solely in terms of such conditions.

2.1.2 Nonparametrics

The most natural nonparametric estimator for G is the empirical distribution (function) G̃n(y) =

Ĝ(y) = n−1
∑n

i=1 1{Yi≤y}, which essentially assigns equal weight 1/n to each of the observa-

tions. Profound studies have through the history revealed a number of powerful and useful

theoretical properties of this estimator. The law of large numbers (Bernoulli, 1713; de Moivre,

1733; Khinchin, 1929) shows pointwise consistency of this estimator, i.e. Ĝ(y) →p G(y) as

n → ∞ (holding also with almost sure convergence →a.s.). This result is made uniform in

terms of the uniform norm supy ‖ · ‖ by what is often referred to as the ‘fundamental theorem

of statistics’, namely the Glivenko–Cantelli theorem (Glivenko, 1933; Cantelli, 1933) stating

that supy ‖Ĝ(y) − G(y)‖ →a.s. 0 as n → ∞. Further, the pointwise asymptotic distribution

of
√
n(Ĝ(y) − G(y)) is zero-mean Gaussian by the central limit theorem. This result is also

made uniform by the so-called Donsker theorem which states that
√
n(Ĝ(·) − G(·)) process

converges (weak convergence) to a zero-mean Gaussian process Z(·) with covariance function

Σ(x, y) = G(min(x, y)) − G(x)G(y), also commonly referred to as a G-Brownian bridge.

Furthermore, a result known as the functional delta method (van der Vaart, 2000, Theorem

20.8) (a generalisation of the familiar delta method for vectors (van der Vaart, 2000, Theorem

3.1)), may be used to extend the Donsker theorem to smooth functionals of G, i.e. functions

taking the process G as input. For a sufficiently smooth functional T , the result says that√
n{T (Ĝ)− T (G)} →d T

′(Z), where T ′ is another functional known as the functional deriva-

tive at G. In particular, T ′(Z) is a Gaussian process in the relevant space. The precise smooth-

ness condition required, is that of Hadamard or compact differentiability; see e.g. van der Vaart

(2000, p. 297) for a precise definition. In particular, this very general result provides the limit

distribution for any continuously differentiable function of one or more quantiles G−1(p) and

means
∫
h(y) dG(y).

The functional delta method does not work for g(y), however. For discrete distribution, the

probability mass function g(y) = Pr(Yi = y) is also easy to estimate nonparametrically by

the size of the discrete jumps in Ĝ. For continuous distributions, however, the density g(y) =

∂G(y)/∂y is more troublesome. The histogram, apparently first introduced by Pearson (1895),

is often used as a visual tool for inspecting the density. The histogram divides the data range

into bins (starting at some y0): Bj = [y0 + (j − 1)h, y0 + jh), j = 1, . . . for some bin-width h,

hereby called the bandwidth, and uses

g̃(y) =
1

n

n∑
i=1

∑
j

1{(Yi∈Bj , y ∈Bj}, (2.5)

resulting in a bar diagram showing the frequencies of the data falling into each bin once plotted.

If the bandwidth h = hn decreases to zero slower than n−1 as the sample size increases, i.e. if

hn → 0 while hnn → ∞ as n → ∞, then g̃(y) is a consistent estimator of g(y) (Härdle, 1991,

p. 15). In addition to being a discontinuous step-function, which is somewhat unappealing

when estimating a continuous distribution, the optimal convergence rate of O(n−2/3) for this

estimator is not impressive (Wasserman, 2006, Theorem 6.11). The convergence rate is faster

5



2. PARAMETRIC AND NONPARAMETRIC MODELLING AND ASYMPTOTICS

for the related naïve density estimator

ĝ(y) = #{Yi ∈ [y − h, y + h); i = 1, . . . , n}/(2nh),

for some small bandwidth h. Even though this estimator has a faster convergence rate and keeps

the same consistency properties, it is not very robust and efficient, and is still discontinuous; see

e.g. Silverman (1986) for further details. Writing the estimator as

ĝ(y) =
1

n

n∑
i=1

1

h
K

(
y − Yi

h

)
, (2.6)

with K(x) = 1
2
1{|x|≤1}, motivates using a smooth kernel function K, rather than the ‘boxcar’

kernel which gave the naïve density estimator. Under weak conditions on the kernel function,

the general class of estimators of the form (2.6) has an optimal convergence rate of O(n−4/5) and

estimates g(y) consistently, as long as h = hn → 0 and hnn → ∞ as n → ∞ (Lehmann, 1998,

Theorem 6.4.1 and Corollary 6.4.1). Typical choices of the kernel function are the standard

normal distribution K(x) ∝ exp(−x2/2), the Epanechinkov kernel K(x) ∝ (1 − x2)1{|x|≤1},

and the tricube kernel K(x) ∝ (1 − |x|3)31{|x|≤1}. The bandwidth is often set using cross-

validation (see e.g. Jones et al. (1996)), or using plug-in selectors like Silverman’s ‘rule of

thumb’ (Silverman, 1986), corresponding to hn = 1.059σ̂n−1/5 for σ̂ the empirical standard

deviation.

Motivated by the above smoothed density estimation procedures, authors have also suggested

using

G̃(y) =

∫ y

−∞
ĝ(x) dx, (2.7)

with ĝ as in (2.6), as a smooth estimator for the distribution function G. This estimator is

asymptotically equivalent to Ĝ(y) in the sense that
√
n(Ĝ(·)−G) and

√
n(G̃(·)−G) converges

in distribution to the same limit process (Watson & Leadbetter, 1964).

2.1.3 Parametric and nonparametric regression

Consider now the more general regression setting where, in addition to Yi, covariate vectors

Xi, i = 1, . . . , n are also available and assumed to have an influence on the distribution of the

data. That is, the conditional distribution G(·|x) depends on the covariates having value x. For

parametric modelling it is then more natural to describe the parametric family by F (·; θ|x),
resulting in a maximum likelihood estimator on the same form as (2.1), but with Ln(θ) =∏n

i=1 f(Yi; θ|Xi) and an analogous definition for �n(θ). The results in (2.2) and (2.4) still hold

with the new definitions of �n(θ), modulo slightly stronger regularity conditions and that θ0
rather minimises the more general weighted Kullback–Leibler divergence

KL(fθ, g) =

∫ ∫
g(y|x) log g(y|x)

f(y; θ|x) dy dC(x),

6



2.2. Survival analysis

where C is the distribution of the covariates. For further details and discussion, see e.g. Claeskens

& Hjort (2008a, Ch. 2).

There exist several different procedures for nonparametric regression. Most of them are how-

ever in principle analogous to those mentioned for density estimation above. In fact, the density

estimation problem may be translated to a nonparametric regression problem such that all tech-

niques applicable to the latter become available also for the former (Nussbaum, 1996; Brown

et al., 2010). As these types of problems shall not concern us particularly, we will not go further

into details on this topic. See e.g. Wasserman (2006, Ch. 5) for further concepts and details.

2.2 Survival analysis

In the survival analysis community, there is a strong tradition for using non- or semiparametric

modelling approaches, as opposed to fully parametric ones. The reason for this is possibly

the formers’ intuitive setups and simple interpretations. In the covariate free case, one has

data of the form (Ti, Di), i = 1, . . . , n observed over a time window [0, τ ] where Ti is the

possibly censored survival time (or more generally time to some event), while Di is the indicator

of Ti being equal to the uncensored, but unobserved, event time T
(0)
i . For analysis of such

data, the counting process Ni(t) = 1{Ti≤t,Di=1} and the individual at-risk processes Yi(t) =

1{Ti≥t} for i = 1, . . . , n, play key roles along with the martingales based on these processes

Mi(t) = Ni(t) −
∫ t

0
Yi(s)α(s) ds, where α(s) is the hazard rate defined below. Denote by G

the common distribution of the fully observed survival times T
(0)
i , which we shall here assume

have a continuous event density g. For notational convenience we also assume there are no tied

events.

For such data one is often interested in modelling the survival function S(t) = 1 − G(t) =

Pr(T
(0)
i > t) and the hazard rate α(t) = g(t)/S(t), or the latter’s cumulative A(t) =

∫ t

0
α(s) ds.

The Kaplan–Meier estimator is a nonparametric estimator of the survival function, first pro-

posed by Böhmer (1912) and later re-introduced and popularised by Kaplan & Meier (1958). It

takes the form

Ŝ(t) =
∏
Tj≤t

(
1− 1∑n

i=1 Yi(Tj)

)
.

The Nelson–Aalen estimator (Nelson, 1969, 1972; Aalen, 1975, 1978) is a related nonparamet-

ric estimator of the cumulative hazard rate. It is given by

Â(t) =
∑
Tj≤t

1∑n
i=1 Yi(Tj)

.

Under appropriate conditions, these are consistent and both
√
n{Ŝ(·) − S(·)} and

√
n{Â(·) −

A(·)} process converges to certain explicit zero-mean Gaussian processes, see e.g. Andersen

et al. (1993, Ch. IV).

A perfectly valid alternative to the above type of nonparametric modelling is to rely on a para-

metric class of distributions, event densities or hazard rates. As the hazard rate plays such

an important role in survival analysis, the parametric model families are often described in

7



2. PARAMETRIC AND NONPARAMETRIC MODELLING AND ASYMPTOTICS

terms of families of hazard rates. The exponential distribution is the simplest family, having a

constant hazard rate αexp(t; θ = λ) = λ. The Weibull and Gompertz distributions are also pop-

ular extensions, having respecitve hazard rate functions αwei(t; θ = (λ, γ)) = γλ(λt)γ−1 and

αgom(t; θ = (λ, γ)) = λ exp(γt). Inference for these parametric models typically proceeds via

maximum likelihood estimation, similarly to the case for the fully observed data in Section 2.1.

Since the observations are only partially observed, the likelihood takes a somewhat different

form, however. The log-likelihood is in particular given by

�n(θ) =
n∑

i=1

∫ τ

0

[logαpm(s; θ) dNi(s)− Yi(s)αpm(s; θ)] ds. (2.8)

Note that unless the censoring mechanism is uninfluenced by θ, then (2.8) is not a true likeli-

hood. This has no consequence for inference, however.

The maximum likelihood estimator θ̂ specifies the precise form of the parametric hazard rate

function and its cumulative. The precise formula for the survival function is further found

via the link S(t) = exp{−A(t)}. In principle any other parameter or function related to the

distribution of the survival times may be found via similar transformations. Under appropriate

conditions, the properties of the maximum likelihood estimator derived in Section 2.1, both

under model conditions (Borgan, 1984) and under general misspecification (Hjort, 1992), hold

also for this case.

Let us turn to the more general regression case, where also covariate vectors Xi are available for

each individual. In the same manner as nonparametrics are popular for the covariate free case,

semiparametrics are widely applied in the regression case, in particular due to Cox’s partial

likelihood formulation (Cox, 1972, 1975). In his proportional hazard regression setup, the

hazard rate function is assumed to take the form

α(t|x) = α0(t) exp(x
tβ), (2.9)

with β some vector of regression coefficients and α0(t) some unspecified baseline hazard func-

tion. The β represents the parametric part of the model, while leaving the baseline hazard

unspecified indeed makes (2.9) semiparametric. Since α0 is completely unstructured, a full like-

lihood is not attainable. Due to the proportional form of (2.9), relative risks (or more precisely

hazard ratios) α(t|x2)/α(t|x1) are independent of the baseline hazard and thus fully paramet-

ric. Cox utilised this property to construct a relative risk type of partial likelihood which is

independent of the baseline hazard α0. The likelihood yields

Lpartial,n(β) =
n∏

i=1

{
exp(Xt

iβ)

Rn(Ti; β)

}Di

, (2.10)

where Rn(s; β) =
∑n

i=1 Yi(s) exp(X
t
iβ) is the ‘cumulative risk’ of all the individuals at time s.

Since the only unknown quantity in (2.10) is the regression coefficients β, one may estimate β

by maximising the partial likelihood. This estimator β̂cox = argmaxβLpartial,n(β) is known as the

maximum partial likelihood estimator. The exponential form of the proportional hazard setup

also provides an intuitive and simple interpretation of the individual regression coefficients, as
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2.2. Survival analysis

exp(βj) is indeed the hazard ratio between two individuals whose covariate information differs

only by a unit of 1 in the j-th covariate.

The Breslow estimator (Breslow, 1972) is typically called upon when one wishes to estimate

features of the underlying distribution which does not depend solely on the regression coeffi-

cients, but also on the baseline hazard α0. Examples of such are cumulative hazards, survival

functions, life-time quantiles and similar, possibly conditioned on certain covariate values. The

Breslow estimator estimates the cumulative hazard function by

Âcox(t) =

∫ t

0

∑n
i=1 dNi(s)

Rn(s; β̂cox)
.

Semiparametric estimates of the cumulative hazard and survival functions conditioned on some

covariates given by x, are then given by respectively Â(t|x) = Âcox(t) exp(x
tβ̂cox) and Ŝ(t|x) =

exp{−Â(t|x)}. Under various conditions (including that the Cox model in (2.9) indeed holds),

these estimators are consistent, while
√
n{Â(· |x) − A(· |x)} and

√
n{Ŝ(· |x) − S(· |x)} have

explicit zero-mean Gaussian process limits; see e.g. Andersen et al. (1993, Ch. VII.2.2).

An alternative to leaving the baseline hazard α0(t) completely unspecified is to assume it

takes a certain parametric form, say α0,pm(t; θ), typically corresponding to those mentioned

for αpm(t; θ) in the covariate free case above. A fully specified likelihood with parameters

(θ, β) may then be established. The resulting log-likelihood extends that of (2.8) and is given

by1

�n(θ, β) =
n∑

i=1

∫ τ

0

[{logα0,pm(s; θ) +Xt
iβ} dNi(s)− Yi(s)α0,pm(s; θ) exp(X

t
iβ) ds

]
.

This gives rise to fully parametric alternatives Âpm(t|x) = A(t; θ̂) exp(xtβ̂) and Ŝpm(t|x) =

exp{−Âpm(t|x)} to the semiparametric estimators Â(t|x) and Ŝ(t|x). As for the covariate

free case, Borgan (1984); Hjort (1992) establish comforting asymptotic properties for these

estimators under suitable conditions.

Similar relative risk type of partial and fully parametric likelihoods may also be formulated

for other proportional hazard models, i.e. when the proportionality function r in α(t|x) =

α0(t)r(x
tβ) is not log-linear in the β as with r(a) = exp(a). Examples are the regular linear

form r(a) = 1 + a, or the logistic form r(a) = exp(a)/{1 + exp(a)}. Although such formu-

lations gives rise to new semiparametric and parametric estimators, the regression coefficients

typically have less appealing interpretations and their asymptotic properties are more trouble-

some to handle (Prentice & Self, 1983). Such formulations are therefore only sporadically used

in practice, see also Aalen et al. (2008, Ch. 4.1). Yet other semiparametric and fully paramet-

ric regression procedures appear to be used occasionally. Among them are Aalen’s additive

hazard regression (Aalen, 1989) which assumes that the conditional hazard α(t|x) is a linear

combination of regression coefficients β, and Efron’s parametric logistic regression approach

for discretised survival times with grouped covariates (Efron, 1988).

1Once again, with no consequences for inferences, this is a true likelihood only if the censoring mechanism

and covariate distribution are independent of the parameters θ and β.
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2. PARAMETRIC AND NONPARAMETRIC MODELLING AND ASYMPTOTICS

2.3 Time series analysis

Time series analysis concerns the study and estimation of underlying features and mechanisms

of processes observed over time. That is, analysis of an observed sequence of real valued ran-

dom variables Y1, . . . , Yn, which we shall take as stationary and observed at discrete equidistant

time points t = 1, . . . , n. However, in practice, time series processes often evolve over time,

corresponding to a mean or trend function. Thus, we shall here assume that the time series

Y1, . . . , Yn has been initially detrended, and rather concentrate on modelling and analysing the

dependencies of this detrended time series. When analysing such data, it is quite common

to assume that the data generating process is Gaussian, in which case the covariance function

C(h) = Cov(Yt, Ys), h = |s− t| determines the distribution of the time series completely.

There are essentially two parallel approaches or domains for analysing time series data. In the

possibly most natural time domain, one works directly with the covariance function C(h), and

tries to estimate that ‘directly’ based on the observations. By Wold’s theorem (Priestley, 1981,

p. 222) the covariance function may also be represented as C(h) =
∫ π

−π
cos(ωh) dG(ω) where

G is the so-called spectral distribution, having the usual properties of a distribution function on

(−π, π). When G is everywhere differentiable, the spectral density g(ω) = ∂G(ω)/∂ω exists

for all ω ∈ (−π, π) and may be represented by

g(ω) =
C(0)

2π
+

1

π

∞∑
h=1

C(h) cos(ωh), for ω ∈ (−π, π). (2.11)

Thus, time series data may analogously be studied and described in terms of the spectral den-

sity g(ω), which by (2.11) is seen to be symmetric around ω = 0. In this spectral or fre-
quency domain, one works with the spectral density g(ω) and the spectral distribution G(ω) =∫ ω

−π
g(ω) dω, trying to estimate and learn about these.

The most common parametric time series model is the autoregressive (AR) model. Defining

Yt = 0 for t ≤ 0, this models assumes that

Yt =

p∑
j=1

αjYt−j + εt,

for p scalar parameters α1, . . . , αp, and an i.i.d. zero-mean error term εt. The more general au-

toregressive moving average (ARMA) model includes q additional scalar parameters β1, . . . , βq,

and takes the form:

Yt =

p∑
j=1

αjYt−j +

q∑
j=1

βjεt−j + εt. (2.12)

The α- and β-parameters may be represented by a parameter vector θ specifying a paramet-

ric form of the covariance function Cpm(h; θ), which further describes the parametric forms of

a spectral density f(ω; θ) and distribution F (ω; θ). The parameters in the AR-model may be

properly estimated based on the so-called Yule-Walker equations, without making further dis-

tributional assumptions about the underlying time series process; see e.g. Brockwell & Davis
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2.3. Time series analysis

(1991, Ch. 8). For the more general ARMA-model, conditional and unconditional least squares

type of estimation procedures may be used under such circumstances. Alternatively, if one is

willing to make fully descriptive distributional assumptions on the underlying time series pro-

cess, one may put up a full likelihood formula and estimate the parameters via e.g. maximum

likelihood. Under the traditional Gaussian assumption, the log-likelihood takes the form

�n(θ) = −1
2
{n log(2π) + log |Σn(θ)|+ (Y1, . . . , Yn)Σn(θ)

−1(Y1, . . . , Yn)
t}, (2.13)

where Σn(θ) is the covariance matrix of the observations, having elements Cpm(|s − t|; θ) for

s, t = 1, . . . , n. Due to analytical and computational complexities, Whittle (1953) suggested to

rather maximise the following approximation to the Gaussian log-likelihood in (2.13):

�̃n(θ) = −n

2

[
log 2π +

1

2π

∫ π

−π

log{2πf(ω; θ)} dω +
1

2π

∫ π

−π

In(ω)

f(ω; θ)
dω

]
, (2.14)

where for once writing i for the imaginary unit,

In(ω) =
1

2πn

∣∣∣∣∣
n∑

t=1

Yt exp(−iωt)

∣∣∣∣∣
2

=
1

2πn

⎡⎣{ n∑
t=1

Yt cos(ωt)

}2

+

{
n∑

t=1

Yt sin(ωt)

}2
⎤⎦ ,
(2.15)

is the periodogram. For large samples sizes n, it is computationally less intensive to evaluate this

likelihood, which is O(n log n), compared to the full likelihood, which is O(n3). It is also easier

to handle analytically. Under suitable regularity conditions, the maximum likelihood, the Whit-

tle approximated maximum likelihood, the estimators based on the Yule-Walker equations, and

certain conditional and unconditional least squares estimators, are all asymptotically equivalent

(Shumway & Stoffer, 2011, Property P.3.10). These have behaviour inside and outside model

conditions corresponding to those in (2.2) and (2.4), see e.g. Dahlhaus & Wefelmeyer (1996,

Theorem 3.3). Other parametric forms may be handled similarly by maximum likelihood or the

Whittle approximation, either via parametric covariance functions like the Matérn or ‘rational

quadratic’ forms, or by describing the parametric forms of the spectral density directly.

The periodogram introduced above has the property that it estimates the spectral density non-

parametrically; in fact, under appropriate conditions, one may show that E{In(ω)} = g(ω) +

O(n−1) (Brillinger, 1975, Theorem 5.5.2.). Thus, a natural nonparametric estimator of the

spectral distribution is

Ĝ(ω) =

∫ ω

−π

In(u) du.

Since C(h) =
∫ π

−π
cos(ωh) dG(ω), the above estimators may be transformed to a nonparamet-

ric estimator of any quantity determined by the covariance function C(h). This involves, in

particular, the variance and any lag covariances or correlations. In fact, under certain conditions√
n{Ĝ(·)−G(·)} has a zero-mean Gaussian process limit, see e.g. Priestley (1981, Ch. 6.2.5).

This implies, in particular, asymptotic normality of covariances and correlations, and smooth

functions of these.
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3 Model selection

When being presented with data, the statistician or data analyst usually comes up with more than

a single suggestion for how the data might be modelled. The consequence of this is often that a

set of models are being fitted, each with their own consequences and conclusions if being trusted

upon for further inference. This situation appears in the classical regression setup where there

are 2q different models defined by including or excluding each of the q covariates; when data

with an unimodal distribution might deviate from the Gaussian in terms of skewness (skewed

Gaussian distributions) or heavier tails (Cauchy, Laplace or t-distribution); and when a counting

process are to be modelled, and both the Poisson and more general renewal processes appear

appropriate. Model selection is the task of selecting the ‘best’ model from such a fixed set of

candidate models. Figure 3.1 illustrates two basic model selection problems. In the left panel,

the question is whether to trust the exponential, the Weibull or the gamma model being fitted to

the positive data shown by the histogram. In the right panel, the question is whether a linear,

quadratic or cubic regression model should be used to describe the relationship between two

random variables X and Y . In addition to these parametric models one may of course consider

nonparametric candidates, like those surveyed in Section 2.
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Figure 3.1: Two illustrations of typical model selection problems. The left panel shows i.i.d. data on the

positive axis along with the density of three fitted parametric models. The right panel shows a scatterplot

of data corresponding to X and Y , along with three fitted parametric regression models.

Various definitions of ‘best’ have led to a broad range of procedures for model selection, rang-

ing from visual inspection and checks of p-values, to goodness of fit procedures and various

information criteria. Below we first review some classical information criteria for parametric

models and discuss model selection between parametric and nonparametric models, before we
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3.1. Classical information criteria for parametric models

introduce and discuss more thoroughly the focused approach to model selection.

3.1 Classical information criteria for parametric models

When selecting among parametric models, some of the most popular methods are defined in

terms of information criteria. The information criteria are characterised by formulae which

assign a data dependent score to each candidate model. These scores are then used to rank the

models in terms of their performance. The model with the best score is selected and trusted for

further inference, while the others are discarded.

Several of the most famous and frequently applied information criteria take the following simple

penalised log-likelihood form:

IC = 2�n(θ̂)− penalty,

where the model reaching the highest scores is deemed the best. The likelihood term measures

how well the model fits the data, while the penalty term penalises for model complexity –

since more parameters typically means increased variance for estimators based on the fitted

model. Different penalty terms corresponding to different information criteria, having different

properties and possibly different motivations.

The simplest, most famous, and frequently applied information criterion is surely Akaike’s

information criterion (AIC) (Akaike, 1974). For p the dimension of θ, the AIC uses penalty =

2p, yielding

AIC = 2�n(θ̂)− 2p. (3.1)

Although the AIC formula seems quite natural, it stems form quite involved theoretical rea-

soning. Consider for simplicity the i.i.d. situation. Modulo asymptotically negligible terms,

the AIC score is then proportional to a bias adjusted estimator of
∫
g(y) log f(y; θ) dy, the de-

cisive ingredient in the Kullback–Leibler divergence KL(g, fθ) given in (2.3). The penalty is

in this sense a large sample motivated bias adjustment, rather than a direct measure of model

complexity.

The way that the AIC adjusts for this bias has certain limitations, however, and there exists nu-

merous papers attempting to correct for various drawbacks of this bias estimator. For instance,

Sugiura (1978); Hurvich & Tsai (1989) use penalty = 2pn/(n−p−1) to correct improper small

sample properties of the AIC, while the TIC of Takeuchi (1976) uses penalty = 2p̂∗, where p̂∗

is an estimate of the generalised dimension of the parameter space p∗ = trace(J−1K). The TIC

may be viewed as a model robust version of AIC. In the derivation of AIC’s bias adjustment it

is implicitly assumed that the fitted model is correct – which is of course unrealistic in a model

selection setting. This AIC-assumption has the consequence that J = K which gives p∗ = p,

and thereby simplistic AIC-formula in (3.1). The TIC takes this part more seriously, and esti-

mate both J and K to get TIC = 2�n(θ̂)−2trace(Ĵ−1K̂). The generalised information criterion

(GIC) of Konishi & Kitagawa (1996) generalises the idea behind TIC to allow for more general

parameter estimation procedures, like that of M-estimation.

Besides the AIC and its cousins, the Bayesian information criterion (BIC) (Schwarz, 1978),
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3. MODEL SELECTION

sometimes also referred to as Schwarz’s information criterion (SIC), is in frequent use. The

BIC uses penalty = p log n, that is

BIC = 2�n(θ̂)− p log n.

It thus penalises model complexity harder than the above criteria for all but tiny sample sizes.

Although the BIC is structurally very similar to AIC and its cousins, its underlying motivation

is very different. As the name reveals, the BIC has Bayesian roots. Write now BICM for the

BIC score of candidate model M . From a Bayesian perspective, exp(BICM/2) approximates

a quantity which is proportional to the posterior probability that model M is correct, assuming

all candidate models are a priori equally likely. Despite the Bayesian motivation, the criterion

is mainly used, in its original form, for frequentist model selection problems. For various other

information criterion, like the DIC, minimum description length, Mallows CP, and so on, see

e.g. Claeskens & Hjort (2008a, Ch. 2-3).

3.2 Parametric or nonparametric?

The nonparametric (and semiparametric) modelling approaches are powerful and robust tools

for inference, largely due to their consistency and Glivenko–Cantelli type properties. However,

when the truth is ‘close’ to some parametric model with reasonably few parameters, it is typi-

cally preferable to proceed with such a parametric model. The reason for this is that parametric

modelling approaches typically impose a smaller variance, making these more efficient. In the

response to the discussants of his pioneering Cox regression paper (Cox, 1972), Sir David Cox

himself emphasises the importance of considering parametric options: “[The semiparametric

Cox model] is only one way of proceeding and the possibility of a parametric representation of

[α0(t)] will often be worth consideration.” The importance of this somewhat undercommuni-

cated principle is also stressed by Bradley Efron in Efron (1988).

It is evident that model selection involving a set of appropriate fully parametric models and a

lightly structured nonparametric (or semiparametric) modelling approach, constitutes an impor-

tant model selection problem. Despite its importance, there is surprisingly little literature on

comparison and selection among parametric and nonparametric modelling approaches. This is

possibly caused by the difficulty of naturally raising or handling such a problem. The range of

information criteria reviewed in Section 3.1 cannot be directly extended to include such mod-

els, since they all rely on likelihoods – a feature the nonparametrics do not possess. To my

knowledge, there exists no specifically constructed criterion or procedure for selection among

parametrics and nonparametrics. Below we shall discuss the problems associated with the most

intuitive approaches to such selection.

3.2.1 Goodness-of-fit tests

Goodness-of-fit tests are characterised by their ultimate goal of testing whether a set of ob-

servations stems from a specified statistical model or family. The goodness-of-fit is typically

measured in terms of a statistic which is small for good fits. The null hypothesis that the data

stem from the described model is then rejected if the observed value of the test statistic is too
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3.2. Parametric or nonparametric?

large compared to what is to be expected under the null hypothesis.

Pearson’s chi squared test (Pearson, 1900) for categorical or categorised data, is possibly the

oldest and most famous goodness-of-fit test. Assume there are k different categories defined

in only one direction (i.e. a single variable defines the categorical affiliation of an observation).

Consider first the case of checking a fully specified null hypothesis, i.e. whether the probabilities

associated with each of these k categories (p1, . . . , pk) fulfil pj = pj,0, j = 1, . . . , k for fully

specified probabilities p1,0, . . . , pk,0. The test statistic then takes the form

X2 =
k∑

j=1

(Oj − Ej)
2

Ej

,

where Oj is the number of observations in category j, while Ej is the expected number of ob-

servations under the null hypothesis. That is Ej = npj,0. The test statistic may consequently

be expressed in terms of frequencies: X2 = n
∑k

j=1(Oj/n − pj,0)
2/pj,0. Under the null hy-

pothesis, the limiting distribution of X2 (as n → ∞) is χ2 with k − 1 degrees of freedom,

which is then used to test the null hypothesis. In applications, it is usually more interesting

to test null hypotheses constituting a family of probabilities: pj = pj,0(θ), j = 1, . . . , k with

flexibility imposed by a q-dimensional parameter θ. With this formulation, each value of θ con-

stitutes a separate value of the X2 statistic above. Indeed it follows that the smallest value of

this tests statistic, i.e. minθ X
2(θ) (with X2(θ) = n

∑k
j=1(Oj/n − pj,0(θ))

2/pj,0(θ)) follows

a χ2 distribution with k − 1 − q degrees of freedom. In some situations the θ has been fitted

initially via e.g. maximum likelihood, perhaps before categorising the data, and one actually

wants to test whether this specific fitted parametric model suits the data well. The distribution

of the test statistic is no longer χ2 distributed, but has a precise asymptotic distribution which

is stochastically somewhat larger than the χ2 distribution (Chernoff & Lehmann, 1954). In the

case where the categorisation depends on θ, the complexity increases even further. Such cases

are discussed in e.g. Moore & Spruill (1975).

Instead of working with categorical or categorised data, the Cramér–von-Mises (Cramér, 1928;

von Mises, 1928) and Kolmogorov–Smirnov tests (Kolmogorov, 1933; Smirnov, 1948) work

directly with the empirical distribution function. Let us return to the case where one ought to

test a fully specified null hypothesis. Consider testing of the null hypothesis G = F0 for some

fully specified distribution function F0. The two test statistics are then given by respectively

CvM =

∫
(Ĝ(y)− F0(y))

2 dF0(y) and KS = sup
y

|Ĝ(y)− F0(y)|.

Under the null hypothesis, the quantities nCvM and
√
nKS have precise asymptotic distribu-

tions being transformations of Gaussian processes independent of F0; see e.g. Anderson &

Darling (1952). These tests reject the null hypothesis if the observed test statistics deviate

significantly from the centrality of their asymptotic null distributions. In model comparison

settings it is usually more appropriate to compare a family of distributions, say F (·; θ), than a

specific data independent configuration of such a family, like above. Estimating the θ parameter

of such a family, and applying the above procedures as if F (·; θ̂) was given a priori, is however

not generally valid. ‘Luckily’, Durbin (1973a,b) provide asymptotic distributions for the two
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3. MODEL SELECTION

test statistics which hold when the parameters are estimated based on the same data. This may

be utilised to test these more general null hypothesis. In addition, tables of critical values have

been developed to correct for small sample inaccuracies in these distributions.

Although the goodness-of-fit tests above are not constructed for the purpose of performing

model selection, they may in principle be used for selection among parametric candidate mod-

els and the standard nonparametric competitor which puts equal weight on each observation.

The strategy pans out as follows: Rank the parametric models according to some goodness-

of-fit measure, accounting also for model complexity. If all measures exceed the threshold

value set according to a certain (asymptotic) significance level then the corresponding natural

nonparametric model is chosen; otherwise the parametric model associated with the smallest

goodness-of-fit measure is selected. Although such a procedure appears natural and consistent

in theory, and there is a rich literature on multiple testing, the outlined model selection proce-

dure does not seem to have been applied or written out explicitly in the literature before. This is

perhaps due to the difficulty of setting threshold values with several, possibly partially nested,

models fitted from data – which should correct also for model complexity. Another possible

drawback with this approach is that the performance or uncertainty of the nonparametric model

is not explicitly measured or accounted for.

3.2.2 The nonparametric likelihood

Above we claimed that the nonparametric model has no likelihood. This is in some sense not

entirely correct for e.g. the nonparametric kernel density estimator ĝ of the form (2.6). The

‘likelihood’ of this model is simply
∏n

i=1 ĝ(Yi). This should in principle allow comparison

with other parametric models by consulting a likelihood based information criterion. Since the

bandwidth is typically set using the data, the number of parameters would be 1. The problem

with this approach is however that the bandwidth is not selected based on the likelihood; instead,

the smaller the bandwidth – the larger the likelihood. Thus, the whole concept collapses as the

bandwidth h → 0 and the ‘likelihood’ reaches infinity. For other thoughts in this direction,

particularly related to the concept of ‘empirical likelihood’, see e.g. Owen (2001).

Another way to view the nonparametric model is, as mentioned in Section 2, as a parametric

model with an infinite dimensional θ parameter. Provided with a finite sample from some dis-

tribution, it is of course not possible to find such a parameter. For certain classes of parametric

models, one may however fit a parametric model F (·; θ) with a very large number of parame-

ters. For i.i.d. data one may for instance ‘log-expand’ any density (or probability mass function)

f0 by a sequence of exponential families like in Barron & Sheu (1991):

f(y; θ) ∝ f0(y) exp

{
k∑

j=1

θjΨj(F0(y))

}
,

for a fairly large number of orthonormal basis functions Ψ1, . . . ,Ψk. For time series data one

may ‘similarly’ use e.g. an AR(p) model of very large order p. The problem with such pro-

cedures is however that the data are not used as efficiently as in standard nonparametric ap-

proaches. Parametric models with lots of parameter flexibility typically estimate features of the
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3.3. Focus parameter and the focused information criterion (FIC)

distribution implying very detailed structures and properties, i.e. they overfit. This may result

in parametric models whose estimators have larger variance than that of the nonparamatric can-

didate. Although the parametric models with large number of parameters may appear smoother

and visually better-looking, their statistical properties typically make them unfavourable com-

pared to both the parametric models with few parameters and nonparametric models.

3.3 Focus parameter and the focused information criterion
(FIC)

The ultimate goal of statistical modelling is often to estimate and perform inference for one or

a few specific population quantities. Which quantities that are of interest typically depends on

the setting, the data type, and indeed why the analysis is carried out in the first place. Examples

ranges from a measure of centrality like the mean, median or mode, to a measure of spread like

the standard deviation, the interquartile or interdecile range, a quantile, and the probability that

a certain data dependent event occurs – all of these possibly conditioned on specific covariate

values when such are available. We hereby refer to such a pre-specified population quantity as

a focus parameter, and denote it by μ.

When the purpose of the analysis is mainly to perform inference for one or a few such focus

parameters, it seems natural to take this information into account also when selecting model.

This breaks with the principle of the classical parametric model selection criteria mentioned

in Section 3.1 (which rather seek the model with best overall fit and properties) and with the

goodness of fit approaches mentioned in Section 3.2.1. The focused information criterion (FIC)

introduced by Claeskens & Hjort (2003), however, is constructed exactly to accommodate the

principle of utilising the purpose of the analysis. Rather than seeking the model with the best

overall properties, the FIC seeks to find the model which best estimates a single pre-defined

focus parameter μ. This is achieved by measuring the accuracy of the model based estimator μ̂

of μ in terms of its mean squared error. The propriety of such approaches are emphasised also

by Hand & Vinciotti (2003) and Longford (2005).

As a proof of concept for such a focused model selection strategy, recall the setup and notation

in Section 2.2 and consider the following simulated survival analysis case: A set of n = 50

survival times are sampled from the Weibull distribution with cumulative hazard A(t) = t1.3

(i.e. having scale = 1 and shape = 1.3). The observed survival times are right censored, and the

censoring distribution is exponential with constant rate 1/4, resulting in about 20% censoring.

We repeat this simulation procedure several times, and for each such simulated data set we fit the

parametric Weibull model and the simpler exponential model, and compute the fitted survival

functions S(t) = Pr{T (0)
i > t}, in addition to the nonparametric Kaplan–Meier estimator. The

Monte Carlo mean squared errors of the model based estimators are then computed across a

range of t-values. Figure 3.2 shows the root of these Monte Carlo mean squared errors (rmse)

in addition to the mean of the estimated survival probabilities. As seen from the figures, the

risk is uniformly smaller for the estimator based on the fitted Weibull model compared to the

Kaplan–Meier estimator, with a clear efficiency gain. This is perhaps not very surprising, as the

Weibull model is indeed the true model here. It is then more constructive to compare the simpler,
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Figure 3.2: Root mean squared error based on simulated Weibull survival times, and average estimates

of survival times.

biased estimator based on the exponential model, say exp(−θ̂t), to the Kaplan–Meier estimator.

The former has larger risk for small and intermediate valued t, but smaller risk for the largest

t and also within an interval around t = 1. This pinpoints that sometimes, but certainly not

always, it is wise to rely on even a biased parametric estimator, rather than the asymptotically

unbiased nonparametric estimator. Note that in an interval around 1, the estimator based on the

exponential model also outperforms the Weibull model. This tells us that a simpler, misspecified

parametric model may be useful even when a bigger parametric model is indeed correct. Hence,

which model or estimator that should be used depends on which questions are deemed more

important, i.e. on the (focus) parameter selected for scrutiny.

3.3.1 More on the focused information criterion

Below we dig further into the details underlying the original focused information criterion of

Claeskens & Hjort (2003), where we for presentational simplicity concentrate on the i.i.d. case.

The authors work with nested parametric models which all lie between a narrow model de-

scribed by a p-dimensional parameter vector θ and the wide model which uses an additional
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3.3. Focus parameter and the focused information criterion (FIC)

q-dimensional parameter vector γ. The family of densities or probability mass functions of
the narrow and wide model is thereby described by respectively f(y; θ) = f(y; θ, γnarr) and
f(y; θ, γ), where γnarr is the value of the γ parameter making the wide model reduce to the
narrow model. In deriving large sample results, the authors work under a so-called local mis-
specification framework (Hjort & Claeskens, 2003a). This framework assumes that the true data
generating distribution has a density or probability mass function

gn(y) = f(y; θtrue, γnarr + δ/
√
n). (3.2)

Here, the unknown parameter value θtrue determines the limiting true distribution f(y; θtrue) =

f(y; θtrue, γnarr). The unknown q-dimensional δ parameter describes the O(1/
√
n) distance be-

tween the true and the narrow model – in the direction of the γ parameter. Thus, the true model
shrinks with increasing sample size, and reaches the narrow model in the limit. This gives
squared biases of the same asymptotic ‘size’ as the variances, namely O(n−1).

Each candidate model M , between (and including) the narrow and wide models, constitutes
an estimator µ̂M for the focus parameter µ, having true value µtrue,n under the local misspec-
ification framework in (3.2). The authors show that under weak regularity conditions related
to the focus parameter and the candidate models themselves,

√
n(µ̂M − µtrue,n) →d ΛM ∼

N(biasM , varM), with precise expressions for biasM and varM of each candidate model M . The
biasM and varM depend on the focus parameter µ, the local deviation parameter δ and how the
models are nested. As a consequence, the n-scaled squared loss function has a well-defined
limit Ln,M = {√n(µ̂M − µtrue,n)}2 →d LM = Λ2

M . The expectation of this limiting loss LM is
thus

risk∗M = E{LM} = bias2M + varM .

This risk∗M is a natural approximation to n times the actual (finite sample) mean squared error
mseM = E[(µ̂M − µtrue,n)2]. In view of this mean squared error approximation, the FIC scores
are estimates of the risk∗M , and may hence be expressed as

FICM = ̂(bias2M) + v̂arM .

These are computed for each candidate model M using the observed data, and the model with
the smallest FIC-score is selected and trusted as the best model for estimating the focus param-
eter µ. Thus, instead of aiming at a model with good overall fit and properties, the motivation
of the FIC is that the intended use of the model and focus of the investigation should be the
central part of the selection procedure. This has the consequence that even for the exact same
data, different models typically are deemed the best for estimating different focus parameters.

The FIC apparatus is specially geared towards model selection where estimation of a single pre-
specified focus parameter µ is the main goal. The framework suggests that in situations where
several focus parameters are of interest, the FIC procedure should be repeated for each such µ,
possibly resulting in different models being selected for different focus parameters. In some
cases, however, there may be good reasons to endorse only a single final model for estimating
µ. An extension of the FIC, termed the weighted or averaged focused information criterion
(AFIC) and developed in Claeskens & Hjort (2008b), deals with this type of problem. The
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criterion aims at selecting the model which best estimates the whole set of focus parameters
µ(u) for u in some index set. Thus, consider the loss function

L′n,M ;W =

∫
[
√
n{µ̂M(u)− µtrue,n(u)}]2 dW (u),

for W some cumulative weight function chosen from the context to reflect the relative impor-
tance of the different µ(u). In the local misspecification framework we then typically have
L′n,M ;W →d L

′
M ;W =

∫
ΛM(u)2 dW (u). The expectation of the limiting loss function is thus

risk∗M ;W = E{L′M ;W} =

∫
E{ΛM(u)2} dW (u) =

∫
{biasM(u)2 + varM(u)} dW (u).

Similarly to the reasoning underlying the FIC, the AFIC strategy is to estimate risk∗M ;W for all
candidate models, and select the model with the smallest estimated risk. Such a strategy may in
particular be fruitful when a single precise focus parameter cannot be defined. The data analyst
might for instance be asked to find a model which produces good estimates of the ‘upper tail’ of
the distribution, without further specifics of what is meant by the ‘upper tail’. AFIC may then
be applied with a focus parameter set including all quantiles from say 0.8 to 0.999, along with
a suitable weight function perhaps peaking at the 0.9- or 0.95-quantile. Although not 100%
focused like the FIC, such a strategy ought to return a model better tuned towards the intended
use of the model than those returned by overall model selection procedures like the AIC.

In addition to the i.i.d. setting, Claeskens & Hjort (2003) presents FIC for the more general re-
gression setting, using a generalisation of the misspecification framework in (3.2). With similar
local misspecification frameworks, FIC-procedures have also been developed for generalised
additive partial linear models (Zhang & Liang, 2011), Cox’s proportional hazards semiparamet-
ric regression model (Hjort & Claeskens, 2006), certain versions of the Aalen model (Gandy &
Hjort, 2013), autoregressive and autoregressive moving average time series models (Claeskens
et al., 2007; Rohan & Ramanathan, 2011), for missing data (Sun et al., 2014), certain classes of
semiparametric models (Claeskens & Carroll, 2007), quantile regression (Behl et al., 2014), in
addition to a Bayesian version (Nguefack-Tsague & Bulla, 2014). Such have also been utilised
in certain applications within economics (Behl et al., 2012), finance (Brownlees & Gallo, 2008),
fisheries science (Hermansen et al., 2016), personalised medicine (Rolling & Yang, 2014) and
for population size estimation (Bartolucci & Lupparelli, 2008). Yet others have worked with
other loss functions than the squared loss. Claeskens et al. (2006) work with the more general
Lp loss (having squared and absolute loss as special cases), while Brownlees & Gallo (2011);
Zhang et al. (2012) work also with the nonsymmetric linear exponential (LinEx) loss (Varian,
1975; Zellner, 1986).
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4 Geophysical/rock physical inversion
and approximate Bayes

In contrast to the convention in the previous sections, we shall in this section use solely lower-

case roman letters for (vector valued) variables. As commonly employed in Bayesian contexts,

we also use p(·) as a generic notation for probability distributions (both densities and probability

mass functions).

4.1 Geophysical data and rock physics

Geophysics is the study of the physical processes and properties of the earth. The field com-

prises several different types of applications enabling us to learn about plate tectonics, volca-

noes, earthquakes and so on. In the petroleum industry, geophysical knowledge is essential for

locating hydrocarbons in reservoirs thousands of meters below the surface. Extraction of hy-

drocarbons, which are the main ingredient in fossil fuels, is essential for the modern society to

function.

The ultimate goal for petro- and geophysicists is often to predict/estimate unobservable proper-

ties of the rock in the subsurface, such as lithology (i.e. the rock type), porosity, permeability or

saturation. We shall denote such latent quantities by r. The field of rock physics or petrophysics

studies the relationship between these rock properties r, and what we denote by m and refer to

as the geophysical properties or material characteristics. These geophysical properties typically

consist of the density of the rock, in addition to elastic parameters which describe the speed at

which compressional and shear sound waves move through the rock. Such geophysical proper-

ties may neither be measured directly (i.e. they are also latent), but well established geophysical

models describe their relationship to observable geophysical data d. Thus, the pathway from

rock properties r to geophysical data d has the simple structure illustrated in Figure 4.1. For

more on seismic data, geophysics and rock physics, see e.g. Avseth et al. (2010).

r m d

Figure 4.1: Geophysical and rock physical structural illustration

The geophysical data d typically stems from a seismic survey. Although such surveys are also

carried out ashore, we will here focus on offshore marine seismic surveys, as illustrated in

Figure 4.2. In a marine seismic survey, a seismic shock wave is ‘shot’ down in the water from

an air gun towed behind a boat. As the wave reaches boundaries between two layers of rock
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4. GEOPHYSICAL/ROCK PHYSICAL INVERSION AND APPROXIMATE BAYES

Figure 4.2: Sketch of marine seismic survey. Figure reprinted from krisenergy.com (2015).

with different properties, part of the wave energy is reflected while the rest continues through the

layer to reach the next ‘boundary’. As the reflected seismic waves approach the water surface,

the amplitudes are recorded by hydrophones attached to long cables being towed behind the

boat.

After the survey, a rather comprehensive processing procedure is usually carried out by geo-

physicists. The processing typically consists of deconvolving, stacking and migrating the data,

see e.g. Buland & Omre (2003, Table 2.3) for an example. This process is required to clean,

align, and adjust the data in order to make them conformable as input in established geological

models. The most common form of processed data is seismic amplitude versus offset (AVO)

data. Figure 4.3 shows a small illustrational 2D cross section of processed seismic AVO data

from a larger 3D seismic survey offshore Norway.

4.2 The inverse problem and the Bayesian approach

In some sciences, including the geosciences, ‘the inverse problem’ is defined as the problem of

finding an unobservable cause or source that has generated an observed set of data. In the geo-

physics/rock physics setting above, this corresponds to finding either the geophysical properties

m, or ultimately the rock properties r, based on observed geophysical data d. It is referred to

as the inverse problem simply because it is the opposite of the forward or direct problem. The

forward/direct problem consists of finding the possible implications from a cause – i.e., accord-

ing to the laws of physics and geological knowledge, what geophysical data would one expect
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4.2. The inverse problem and the Bayesian approach

Figure 4.3: Example of processed 2D seismic AVO data for three different offsets extracted from a larger

3D seismic survey offshore Norway. Negative amplitudes are red, positive amplitudes are blue. Figure

reprinted from Buland et al. (2008).

to observe if the subsurface had a certain composition of rock or geophysical properties. From

a completely general mathematical perspective, these problems relate to the formulation

y = H(x), (4.1)

where y denotes the observations, x is the unobservable (latent) cause or source, and H is some

operator that describes the (causal) mechanism that produces y given x, possibly based on laws

of physics etc. When uncertainty is involved, either related to the observation or recording of

y, or inaccuracies in the operator H , one may write H(x) = H0(x) + ε, such that (4.1) can be

rewritten as

y = H0(x) + ε. (4.2)
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In this representation, H0 is a fixed, non-stochastic operator and ε is some stochastic error

term. In the setting of Section 4.1, y represents the geophysical data d, while x is either the

geophysical properties m, or ultimately the rock properties r.

The simplest case of (4.1) and (4.2) imaginable occurs when H0 is a linear operator, i.e. a

matrix. Even if this is seldom the case, that theory is by far the most developed. Thus, it is

not uncommon to ‘linearise’ a nonlinear inverse problem and then employ methodology to the

linearised problem. Although such an approach may work in some cases (which are close to

linear), the approach is not generally valid, and may lead to severely wrong conclusions. Before

we turn to approaches for solving inverse problems, note that inverse problems are typically ‘ill-

posed’. In the sense of Hadamard (1923) this means that the problem does not fulfil all criteria

for a well-posed problem: existence, uniqueness and stability of a solution. For an inverse

problem to be well-posed, the operator H0 needs to be bijective, i.e. invertible. In the linear

case this corresponds to H0 being a square matrix with full rank, which is rarely the case.

Mathematicians often study the existence and uniqueness of solutions in noise-free frameworks

with an infinite amount of data. In the presence of a noise term, this term is typically either ne-

glected, or treated as deterministic in the studies. In the simplest linear problem, where the H0

matrix has full rank, the unique solution is found by solving the resulting linear system. In the

less restricted case where H0 has more rows than columns and Ht
0H0 has full rank, the ordinary

least squares solution (Ht
0H0)

−1Ht
0y is optimal in terms of the L2-norm. ‘Mathematical’ opti-

mal solutions to more involved problems are typically related to certain types of regularisation

and generalised matrix inversion. For a more complete review of inverse problems casted in a

mathematical theoretic setting, see e.g. Krisch (2011).

From a statistician’s viewpoint, the treatment of the error term in the ‘mathematical’ approach

is not very accommodating. It then seems more appropriate and realistic to treat the errors as

random noise, which they in many cases indeed are. In a statistical framework, the inverse

problem corresponds simply to carrying out statistical inference for the latent variable x, or

certain aspects thereof, given the observed data y and the probability distribution for the noise

term ε.

In fact, the linear inverse problem can be re-formulated as a linear regression problem. When

Ht
0H0 has full rank, and the covariance matrix of ε is known, the standard frequentist solution is

to use generalised least squares (Aitken, 1935), or more generally maximum likelihood for non-

Gaussian error terms. When Ht
0H0 does not have full rank, a possible frequentist solution is to

use a shrinkage method such as lasso (Tibshirani, 1996) or ridge regression (Hoerl & Kennard,

1970). However, for more general inverse problems, the most common frequentist approaches

appear to be based on minimax estimation theory (Stark, 2000). The main benefit of treating the

error term as random noise in the statistical approach, is the possibility to quantify the uncer-

tainty of the solution. In a frequentist framework this is typically done in terms of one or more

confidence intervals (or regions) with a confidence level α typically equal to 0.9 or 0.95. The

interpretation of this interval (or region) is that if the ‘experiment’ was repeated several times,

then a proportion α of these experiments would have intervals (or regions) containing the true

solution to the inverse problem. From a frequentist viewpoint, the confidence level is however

not a true probability. Also, typically the coverage proportion α holds only asymptotically as
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the effective sample size tends to infinity.

In a Bayesian statistical framework, linear and nonlinear inverse problems are handled anal-

ogously, modulo computational complexity. As in the frequentist approach one specifies H0

and the probability distribution for the noise term ε, which describes the likelihood p(y|x).
However, in the Bayesian approach, the latent variable x is also treated as random. Thus, one

needs to specify its prior probability distribution p(x), reflecting the knowledge and belief of

the statistician regarding this latent variable, before looking at the data. The Bayesian solution

to the inverse problem is then simply to consult the posterior distribution of the latent variable

p(x|y). By Bayes’ theorem (Bayes & Price, 1763), this distribution is given by

p(x|y) = p(y|x)p(x)
p(y)

∝ p(y|x)p(x). (4.3)

The Bayes estimator is the point estimator, in which the Bayesians trust the most. This es-

timator depends not only on the resulting posterior distribution, but also on a loss function

associated with the decision to be made. The most common Bayes estimators are the posterior

mean, median or mode based on respectively the L2-, L1- and 0-1 loss functions. In terms of

the point estimator, the Bayesian approach is no different from the frequentist – the distinction

between the approaches lies in how the uncertainty is quantified. In the Bayesian framework,

the uncertainty or belief in the solution is quantified by one or more credibility intervals (or

regions). As opposed to the frequentist confidence intervals (or regions), the Bayesian credibil-

ity intervals (or regions) are to be interpreted as true probability distributions. Thus, it makes

sense to say that the true value of the latent variable x lies in a certain interval or region with

some probability derived directly from the posterior distribution. This interpretation is possibly

the key tenet of the Bayesian approach. In addition, the ease of which prior information and

additional knowledge about the problem may be incorporated directly in the solution, has given

the Bayesian approach a large faithful fanbase.

4.3 General approximate Bayesian inference

In the Bayesian statistical approach one typically pose a problem like the above in a hierarchical

setting by introducing also a set of parameters θ, typically corresponding to unknown model

components of the distribution of either x and y. The full model description then requires also

a prior distribution for these parameters p(θ), in addition to a prior for the latent field p(x|θ)
and the likelihood p(y|x, θ). When the mechanisms involving θ are fairly well-known and

stable, and the actual interest is solely in the latent variable (or cause) x, one may treat these

mechanisms as part of the model formulation. This makes it possible to exclude the θ parameter

from the setup and thereby reduce the complexity of the model formulation to that of (4.3).

Although (4.3) is a very simple formula, deriving an analytical, explicit formula for p(x|y) may

be terribly difficult, especially in higher dimensions. The reason for this is that one typically

needs to solve the integral in the denominator of the formula. When the prior p(x) is so-called

conjugate for the likelihood p(y|x), however, an explicit formula for the posterior is available.

This class of priors, first introduced by Schlaifer & Raiffa (1961), has the property that the

resulting posterior distribution takes the same parametric form as the prior. When the inference
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parameter (x) is low dimensional, most of the classical likelihood models have a decent range

of conjugate priors to choose from. The range is more limited in higher dimensions, and there is

no guarantee that the conjugate priors available are able to represent the statistician’s previous

knowledge.

When the prior takes a non-conjugate form, one typically needs to employ some kind of nu-

merical or analytical approximation. When the dimension of the latent variable is low, this

typically amounts to solving the integral in the denominator of (4.3) by a numerical integration

procedure like the quadrature, trapezoidal or Simpson’s rule; see e.g. Ausín (2014) for a recent

review. Alternatively, sampling based approaches like direct Monte Carlo or more sophisticated

conditional/weighted Monte Carlo, importance sampling and acceptance rejection procedures,

may be applied; see e.g. Thisted (1988, Ch. 5); Rubinstein & Kroese (2008, Ch. 2 and 5).

However, in order to maintain the accuracy of the solution when the (effective) dimension of

the integrand increases, the number of required evaluation points typically grows exponentially.

This phenomenon is known as the curse of dimensionality (Thisted, 1988, Ch. 5.7.2). Thus, in

the high dimensional settings where the inverse problems typically live (at least those of the type

described in Section 4.1), one needs to consult other procedures for approximating the posterior

p(x|y). Below we briefly review some of the most well-known classes of such procedures.

4.3.1 Markov chain Monte Carlo (MCMC)

The simulation based Markov chain Monte Carlo (MCMC) procedures (Robert & Casella,

2005) are without doubt the most popular technique for approximating non-trivial posterior

distributions. The procedure is based on constructing a Markov chain that has the posterior dis-

tribution as its stationary or equilibrium distribution. After a number of initial burn-in samples,

the (dependent) samples of a random walk with transitions corresponding to such a Markov

chain will be approximately distributed according to the posterior distribution.

Although there exists a wide variety of strategies for constructing Markov chains with the de-

sired properties, most procedures (possibly except for the so-called slice sampler) are variations

of the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) or the Gibbs

sampler (Geman & Geman, 1984). The Metropolis-Hastings algorithm requires specification

of a jumping or transition distribution, say q(x0|x), from x to x0. Then, after initiating the al-

gorithm by a starting value x(0), the algorithm repeats the following two steps for t = 1, . . .: A

proposal x
(t)
0 is sampled according to q(x

(t)
0 |x(t−1)), where x(t−1) denotes the previous sample.

The proposal is then accepted as a new sample x(t) = x
(t)
0 with probability min(1, α) where

α =
p(x

(t)
0 |y)q(x(t−1)|x(t)

0 )

p(x(t−1)|y)q(x(t)
0 |x(t−1))

.

Otherwise, x(t) is set equal to x(t−1).

The alternative Gibbs sampler divides the sampling vector x into k subvariables, say x1, . . . , xk,

and requires that sampling from the distribution p(xj|y, x−j) is accessible for j = 1, . . . , k,

where x−j denotes the vector containing all elements of x except xj . Then, after initiating

a starting value for x, each iteration of the algorithm consists of sampling posterior values of
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each of the xj, j = 1, . . . , k, conditional on the current value of the other variables, i.e. sampling

x
(t)
j -variables according to p(xj|y, x(t−1)

−j ) where x
(t−1)
−j = (x

(t)
1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
k ).

The popularity of the MCMC approach is mainly due to its incredibly general form. No matter

how analytically messy your likelihood and prior looks, MCMC can provide samples from an

arbitrarily precise approximation to the posterior distribution after a sufficiently long ‘burn-in’

period. One drawback of the approach is that some setups require extremely long ‘burn-in’

sequences, and it might be difficult to determine if the algorithm has ‘converged’. Another is

that the samples can be highly dependent, requiring a very large number of samples. This is a

consequence of the difficulty of finding the right balance between mixing of the proposals and a

decent acceptance rate. Thus, for very high dimensional problems, it may be difficult to obtain

samples whose empirical distribution approximates the true posterior distribution with suffi-

cient precision within a decent amount of time. For a more thorough discussion of strengths,

weaknesses, and variations of the procedures, see e.g. Robert & Casella (2005).

4.3.2 Integrated nested Laplace approximation (INLA)

The recent integrated nested Laplace approximation (INLA) methodology by Rue et al. (2009)

approximates posterior distributions for so-called latent Gaussian (Markov random field) mod-

els. Let us for this subsection once again assume there is an additional unknown θ parameter

involved in the model formulation. A latent Gaussian (Markov random field) model is charac-

terised as follows: p(θ) is low dimensional; p(x|θ) ∼ N(0, Q(θ)−1), where Q(θ) is a sparse

precision matrix, i.e. the inverse of the covariance matrix; and p(y|x, θ) =
∏n

i=1 p(yi|ηi, θ)
where the ηi =

∑n
j=1 cijxj are known linear combinations of the latent field. Thus, the data are

conditionally independent, the latent field is Gaussian, and the Markov random field denotation

imposes the precision matrix Q(θ) to be sparse.

The basic principle of the INLA methodology is, as the name reveals, to utilise several nested

Laplace approximations. The posterior distribution of θ is approximated using the Laplace

approximation

p(θ|y) ∝ p(y, x, θ)

p(x|y, θ)
∣∣∣
x=x′(θ)

≈ p∗(θ|y) = p(y, x, θ)

p∗(x|y, θ)
∣∣∣
x=x′(θ)

,

where the mode x′(θ) = argmaxxp(x|y, θ) is typically found via numerical Newton–Raphson

type optimisation. The marginal posterior distribution for the elements of θ are then found by

numerical integration over θ. To approximate the marginal posteriors of the latent field p(xj|y)
for j = 1, . . . , n (i.e. without conditioning on θ), the procedure uses

p∗(xj|y) ≈
∫

p∗(xj|y, θ)p∗(θ|y) dθ,

where p∗(xj|y, θ), j = 1, . . . , n are established through separate Laplace approximations.

The procedure delivers very impressive accuracy when applied to the models of this particular

class. Also, when these are high dimensional, the speed-up of the procedure compared to the

MCMC approach is typically several orders of magnitudes. The success of the INLA proce-
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dure lies merely in the details, rather than the basic construction above. This involves clever

utilisation of the sparseness of the precision matrix Q(θ) introduced by the Markov random

field, the optimisation routines for finding the modes above, and the numerical integration. The

full INLA procedure is implemented in the R-package R-INLA, see e.g. Martins et al. (2013);

Blangiardo & Cameletti (2015) for further details.

4.3.3 Approximate Bayesian Computation (ABC)

The approximate Bayesian computation (ABC) procedure (Beaumont et al., 2002) is a class

of sampling based procedures for approximating the posterior distribution specifically targeted

to deal with situations where evaluation of the likelihood function p(y|x) is the bottleneck.

This is particularly the case when the dimension of y is extremely large (compared to x) or for

some reason there is no explicit analytic closed form formula for p(y|x). Such circumstances

occur frequently, for instance in certain applications in genetics, ecology and epidemiology.

The method produces independent samples from the posterior distribution without the need to

evaluate the troublesome likelihood p(y|x), which is an inevitable part of all other procedures.

The basic form of the procedure goes as follows: First, a large number of variables are sampled

from the prior distribution p(x). Then, given each of these samples, a new set of data y′ is

sampled according to the likelihood model. (Obtaining such a sample is often feasible without

evaluating p(y|x).) Then the new data y′ is compared to the original data y, and the sample

is accepted as a sample from the posterior if it is deemed sufficiently similar to the original

data. Closeness is typically measured by the ‘distance’ between some informative (preferably

sufficient) summary statistics S of the two data sets. Thus, for a distance measure ρ, the sample

is accepted if ρ(S(y), S(y′)) ≤ ε, where ε typically needs to be strictly positive for the proce-

dure to be computationally feasible. Although there exist various techniques for selecting the

summary statistic S, the distance measure ρ, and the cut-off value ε, this remains an active field

of research. See e.g. Blum et al. (2013) for a review of such techniques.

Thus, when the inverse problem at hand has a computationally infeasible likelihood p(y|x), the

ABC procedure is in principle the only applicable procedure. When evaluation of the likelihood

is not the bottleneck, other approaches are more suitable. For more on the theory and practical

application underlying the ABC, see e.g. the recent resource Sisson et al. (2015).

4.3.4 Variational Bayes (VB)

The variational Bayes (VB) technique is a procedure which, in contrast to the previous sam-

pling based approaches, produces an analytical approximation to the posterior distribution

p(x|y). The approximated posterior p∗(x|y) is the minimiser of the Kullback–Leibler diver-

gence KL(q(x), p(x|y)) given in (2.3), where q(x) is a restricted class of probability distribu-

tions. The most common VB procedure, known as mean field VB, restricts the approximation

class to distributions q(x) which factorises into k ≤ dim(x) different distributions, i.e. q(x) =∏k
j=1 qj(xj), but lays no other distributional assumptions on the approximation class. In such a
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situation, a general expression for the optimal solution is p∗(x|y) =∏k
j=1 q

∗
j (xj), where

q∗j (xj) ∝ exp(Eq−j
[log{p(y|x)p(x)}]), (4.4)

where Eq−j
[log{p(y|x)p(x)}] = ∫ log{p(y|x)p(x)}∏i �=j{qi(xi) dxi} denotes the expectation

with respect to all factors of q except the j-th. Thus, the optimal solution will depend on

the data y, and the parameters in the likelihood p(y|x) and the prior p(x). Except for a few

special cases, the q∗j in (4.4) does not take explicit forms. A recursive algorithm maximising

and then updating one factor at a time may be employed. This algorithm is closely connected

to the expectation maximisation (EM) algorithm (Dempster et al., 1977), and is guaranteed to

converge to a (local) optimum due to the convexity of the optimisation problem.

The number of factors and precise subdivision of them are key in the mean field VB approach.

As a consequence of the setup, any dependence between factorised variables is ignored. This

generally results in underestimation of the variability in the joint posterior distribution. Thus,

variables whose dependence is crucial should not be factorised. Fewer factors leads to a the-

oretically better approximation (in terms of the Kullback–Leibler divergence), but contrarily

also a more difficult and computationally more time consuming optimisation problem. Hence,

the factorisation of the variables should be guided by knowledge of the likelihood and prior

model. Consider the case where the latent variables x correspond to spatial locations. When

the locations are clustered, the factorisation is natural and the VB procedure should be very

much suitable. When the locations are (approximately) given on a dense grid, it is typically

more difficult to find a proper grouping of the variables. The approach is therefore perhaps less

suited for such cases. This is often, but not always, the case for applications like in Section 4.1.

For a thorough review of the VB approach from a pragmatic machine learning perspective, see

e.g. Beal (2003). For a more careful probabilistic introduction, see e.g. Bishop (2006, Ch. 10).

Expectation propagation (EP) is another closely connected analytic approximation procedure.

The EP procedure approximates the posterior distribution p∗(x|y) by minimising the Kullback–

Leibler divergence KL(p(x|y), q(x)), i.e. the divergence from the true posterior p(x|y) to a class

of probability distributions q(x) – opposite of the direction in mean field VB. In practice, the

optimisation problem turns out rather different, however, and there is particularly no conver-

gence guarantee for the standard iterative optimisation algorithm. See e.g. Minka (2009) for a

thorough review of the EP procedure.

4.4 Approximate Bayesian inference within the geosciences

There appears to be few examples of the aforementioned Bayesian approximation procedures

being directly applied to inverse problems within the geosciences. On the other hand, there

is a large number of papers within the geoscience community which develop machinery to

handle the application specific inverse problems. We review some of these methodological

developments below.

Recalling the notation and setup in Section 4.1, the inversion problem is often viewed as a com-

position of two inversion problems: Geophysical inversion (inversion from geophysical data d

to geophysical properties m) and rock physics inversion (inversion from geophysical properties

29



4. GEOPHYSICAL/ROCK PHYSICAL INVERSION AND APPROXIMATE BAYES

m to rock properties r). There are therefore essentially two approaches for dealing with the

full inversion problem: The sequential two-step approach which handles the two problems sep-

arately, and the joint or simultaneous approach which performs full inversion in a single step.

The joint (Bayesian) statistical approach is typically considered the most appropriate when the

ultimate interest is indeed in the (latent) rock properties r (Bosch et al., 2010). Although it shall

not concern us as such, note that there is a rich literature also on fully deterministic inversion

procedures typically based on local or global optimisation, see e.g. Sen & Stoffa (2013) for an

overview. Such approaches appear to be in less frequent use nowadays, possibly since such

uncertainty-ignorant methodology is considered less appropriate (Francis, 2006a,b).

Buland & Omre (2003) describes a widely used geophysical inversion approach, often referred

to as (linearised) Gaussian inversion. The approach utilises a direct Gaussian approximation for

inverting seismic AVO data y = d to elastic parameters and density x = m. More specifically,

under the common assumption that p(y|x) is Gaussian with a mean function which is linear

in x and a covariance matrix which is independent of x, Buland & Omre (2003) approximates

p(x) by a Gaussian. This is a convenient, but typically very rough approximation. By this

approximate construction, p(x|y) is Gaussian with linear dependence on the data y = d and a

fixed covariance matrix – and thereby computationally extremely efficient. Rimstad & Omre

(2014a,b) improves the approximation accuracy by extending the approximate prior p(x) to the

more general class of selection Gaussian distributions (Arellano-Valle et al., 2006). This class

allows for skewness and multimodality while inheriting beneficial properties of the Gaussian

distribution. Although the resulting approximation to the posterior p(x|y) is computationally

harder to evaluate, it is still analytically tractable. Grana & Della Rossa (2010) use a concep-

tually similar approach using Gaussian mixtures for inversion from geophysical data y = d, all

the way to the rock properties x = r.

Some of the methodologies within the field are developed to deal with situations where the la-

tent variable x is lithology or facies, i.e. a categorical variable. Several of these approaches are

based on Larsen et al. (2006) which introduces discrete Markov dependencies for the spatial

distribution of x, and includes an initial step inverting the geophysical data d to geophysical

properties m using Gaussian inversion (Buland & Omre, 2003), even if the distribution of m is

typically multimodal. A correction is subsequently made for this misspecification. There also

exist methodologies which take the seismic processing uncertainty into account, see e.g. Houck

(2002). For a more thorough review of (approximate) inversion procedures within the geo-

sciences, see Bosch et al. (2010); Doyen (2007).

The main reason for the separate development of the geoscientific methodology lies in the com-

putational feasibility. There appears to be a gap between the speed attained when applying

the general methodology surveyed in previous subsections to inverse problems within the geo-

sciences, and what is acceptable for the industry (Mosegaard & Tarantola, 2002). The MCMC

approach seems to be the only general procedure which is utilised to some extent, see e.g. Ei-

dsvik et al. (2004); Hammer et al. (2012); Malinverno (2002); Mosegaard & Tarantola (1995).

These procedures are however mainly applied to subsets of the global inverse problem, and

even then, they are quite time consuming. As indicated above, the geoscience specific inversion

procedures are often somewhat rougher in nature than the more general procedures. Although
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one would always wish for as accurate a method as possible, this is a price the community has

found it necessary to pay for computational feasibility. Furthermore, as the solutions to the

inverse problems within the geosciences typically are used indirectly to make decisions, minor

inaccuracies and biases may not be crucial. That being said, too rough and inaccurate method-

ology may lead to severely wrong conclusions. Hence, there is still a need for computationally

feasible methodology with improved accuracy.

5 Summary of papers

5.1 Paper I

JULLUM, M. & HJORT, N. L. (2016). Parametric or nonparametric: The FIC approach.
Submitted for publication in Statistica Sinica

Paper I founds a principally new branch of focused information criteria (FIC). This involves

developing a strategy for constructing model selection criteria for selecting among a set of para-

metric models and a nonparametric alternative, specifically tuned towards optimal estimation

of a pre-specified focus parameter μ. In contrast to earlier developments of FIC, this strategy

does not utilize any kind of local misspecification framework. The criteria are rather derived

completely without assumptions relating the parametric models to the true data generating dis-

tribution, allowing in particular the parametric candidate models to be non-nested. Generally

speaking, a focus parameter μ, with true unknown value μtrue, can be estimated nonparametri-

cally by μ̂np and by parametric estimators on the generic form μ̂pm. Under suitable regularity

conditions, we find that Λnp,n =
√
n(μ̂np−μtrue) →d N(0, vnp), and Λpm,n =

√
n(μ̂pm−μ0) →d

N(0, vpm) for each parametric model having its own least false focus parameter value μ0. These

limit distributions motivate the following types of approximate mean squared error formulae:

msenp = n−1vnp and msepm = b2 + n−1vpm, where b = μ0 − μtrue is the bias associated with

using the parametric model. The joint limit of Λnp,n and Λpm,n is then utilized to establish FIC

scores being estimates of these approximate mean squared errors, which then rank the models

and corresponding estimators accordingly. Provided the above limit distributions hold for a

full set of focus parameters, the strategy extends to an average weighted criterion (AFIC) by

essentially integrating over the FIC scores of the (possibly weighted) set of focus parameters.

The above strategy is used to derive FIC and AFIC in the i.i.d. setting for focus parameters

which are Hadamard differentiable functionals of the distribution function. The asymptotic

properties and behaviour of the schemes are studied, and extensions to other data types are

sketched. In particular, we observe that when all parametric models are misspecified with re-

spect to the focus parameter, the nonparametric model wins with a probability tending to one as

the sample size increases. In addition, we show that application of the criteria may be viewed

as implicit focused hypothesis tests having asymptotic significance level chosen by the theory

itself. For the FIC, this level is P (χ2
1 > 2) ≈ 15.7% independently of the focus parameter. For

a particular application of AFIC to categorical or categorised data, such theoretical behavioural

results shed new light on the classical Pearson chi-squared test. We also propose a model aver-
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aging routine which uses a weighted average across all candidate models as a final estimator of

μ – with weights based on the obtained FIC scores. Finally, we discuss extensions and gener-

alisations to a range of other data frameworks and situations, including density estimation and

regression. The supplementary material following the paper (Jullum & Hjort, 2015b) includes,

among other things, a simulation study showing promising results when comparing the FIC and

AFIC to other information criteria. An asymptotic comparison with the original version of the

FIC is also provided.

5.2 Paper II

JULLUM, M. & HJORT, N. L. (2015a). What price semiparametric Cox regression? Sub-
mitted for publication in Scandinavian Journal of Statistics

The objective of Paper II is twofold. The first part concerns studying the ‘price paid’ by rely-

ing on the semiparametric Cox regression model as opposed to a model with a parametrically

specified baseline hazard function, when the latter indeed is correct. This is accomplished by

deriving, and then investigating, the limiting distributions of various estimators based on the

two model types. These are then used to compute the asymptotic relative efficiency (ARE) for

the exponential and Weibull models with different censoring proportions and covariate effects.

We find that the efficiency gain of using more restrictive, fully parametric modelling approaches

depends heavily on the specific quantity being estimated, in addition to the model complexity

and the amount of censoring. When the baseline hazard is constant, we find that trusting para-

metrics to estimate large and small (conditional) cumulative hazards, survival probabilities, and

quantiles gives a substantial gain. On the other hand, there is little to gain when estimating

small regression coefficients. A certain outside-model-conditions extension of the ARE is also

briefly examined.

The second part concerns development of methodology which can handle such selection prob-

lems in practice. Based on the strategy of Paper I, this is carried out by constructing FIC and

AFIC schemes for the Cox regression setting, which allows for simultaneous focused model

selection among a set of fully parametric alternatives and the semiparametric Cox regression

model. The criteria also cover the case without covariates, where the nonparametric candidate

corresponds to a transformation of the Nelson–Aalen or Kaplan–Meier estimator. The crite-

ria are illustrated through applications to survival analysis data for patients with oropharynx

carcinoma. Asymptotic properties and behaviour results similar to those in Paper I are also

derived.

5.3 Paper III

HERMANSEN, G. H., HJORT, N. L. & JULLUM, M. (2015). Parametric or nonparamet-
ric: The FIC approach for stationary time series. Technical report, Department of Mathe-
matics, University of Oslo

Paper III uses the strategy of Paper I (and II) to construct FIC and AFIC schemes for stationary

Gaussian time series, which selects among a set of fully parametric models and a nonparametric
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candidate model. Concentrating on focus parameters connected to the dependence structure of
the time series, we restrict ourselves to detrended time series. In particular, we use some efforts
to show that under weak conditions, the detrended time series may be handled theoretically
as if it was the original series. The nonparametric estimator is based on an estimator of the
periodogram, while the parametric models are treated generally and fitted either via maximum
likelihood, or using the Whittle approximation. Although the methodology applies to general
parametric models, we typically work with the most familiar autoregressive AR(p) and moving
average MA(q) models. The FIC and AFIC criteria are developed for classes of focus param-
eters containing, in particular, covariance and correlations lags and intervals of the integrated
spectrum. We provide a ‘proof of concept’ illustration, in addition to a brief simulation study
to illustrate the practical performance of the derived FIC scheme. Asymptotic behavioural in-
vestigations show that also this FIC scheme behaves much like those in Papers I and II. Various
pointers to further work are provided, including treatment of focus parameters depending on
covariates and trends.

5.4 Paper IV

JULLUM, M. & KOLBJØRNSEN, O. (2016). A Gaussian-based framework for local Bayesian 
inversion of geophysical data to rock properties. Accepted for publication in Geophysics

Paper IV develops a new procedure for approximate Bayesian inversion, specifically constructed
to handle inversion from geophysical data d to the latent rock properties r. The model structure
in question corresponds to that of Figure 4.1, involving also geophysical properties m. Rather
than approximating a full, extremely high dimensional posterior distribution p(r|d), we concen-
trate on approximating marginal posterior distributions for each single cell of the latent field r.
Thus, we sequentially focus on each location of the rock property of interest and approximate
its posterior distribution. The curse of dimensionality challenge is handled by only using the
parts of the variables (r,m, d) which are spatially close and important for the cell being inverted.
Where to draw the border for variable inclusion is a question of balancing methodological accu-
racy and computational speed. We typically assume that p(d|m) is Gaussian with a linear mean
and fixed covariance matrix, and also that we are able to sample locally from p(m, r). Utilising
Gaussian distribution theory, we construct a Gaussian approximation to a low dimensional local
version of p(d|r). This approximate Gaussian likelihood has a flexible dependence structure be-
ing modelled by a general nonlinear regression scheme which is fitted to samples from p(m, r).
A weighted Monte Carlo procedure is used to numerically solve a resulting lower dimensional
integral, which finally approximates all marginal posterior distributions.

The procedure is illustrated on both synthetic and real CO2 monitoring cases related to the
Sleipner CO2 injection project. Based on time lapse seismic AVO data, the project aims at mon-
itoring CO2 which has been injected in the Utsira formation at the Sleipner field offshore Nor-
way. We use our procedure to approximate the spatial dispersion of the injected CO2 through
the CO2 saturation. The accuracy of the approximations is evaluated both by comparison to
the synthetic truth, and to the posterior distribution obtained by an MCMC procedure. The ap-
proximation accuracy of the central tendency and the coverage of credibility intervals are both
considered adequate. We also illustrate that our procedure significantly improves the ability
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to resolve features compared to the widely used direct Gaussian inversion approach of Buland

& Omre (2003). The inversion results also match well with previously published qualitative

interpretations for the real case.

6 Discussion

There are several different directions for which the methodology in the four papers can be

extended, some of which are discussed in the papers themselves. Several of these directions are

listed below, after which I point to a few more. Then, rather than touching the surface of all of

the possible discussion topics relevant for this thesis, I concentrate on two topics related to the

papers, in addition to the recurring and non-recurring themes. First, however, I summarise the

main contributions of each of the papers.

The main contribution of Paper I is the introduction and construction of the new FIC-paradigm

which enables focused model selection among statistical models with and without likelihoods.

While Paper I pans out the strategy and focuses on the theoretic properties and development

for the simplest i.i.d. data situation, the main contributions of Papers II and III are to extend

the scope of that apparatus to proportional hazard regression with censoring, and to stationary

time series. Combined, these three papers allow focused model selection to be carried out, via

natural and intuitive criteria, for a wide range of data and model settings where appropriate

statistical comparison and selection were not previously possible.

The main contribution of Paper IV is the development of a new procedure for approximate

Bayesian inversion within the geosciences. By localising the problem and utilising the paral-

lelisation properties of the methodology, the procedure gives approximate local solutions. The

obtained (adjustable) combination of accuracy and speed is out of reach for existing methodol-

ogy.

6.1 Extensions and further work

The below list shows directions for further work mentioned within the papers themselves:

I Allow for other parametric estimation techniques like M-estimation; derive methodology

for handling candidate models with different convergence rates; derive methodology for

more general loss functions.

II In addition to the extensions mentioned in I, allow for implicit covariate selection and

time-dependent covariates.

III In addition to the extensions mentioned in I, lift the framework to non-Gaussian time

series; derive methodology for handling focus parameters related to the trend function.

IV Approximate short range dependencies between different marginal posterior distribu-

tions; replace either of the Gaussian approximations by Gaussian mixtures or the selection

Gaussian distribution of Arellano-Valle et al. (2006).
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More on these extensions may be found in the discussion and concluding remarks sections in

the respective papers.

Like most previous FIC procedures, those derived in Papers I-III rely on estimates of first order

approximations (to the mean squared error). A natural extension of this is to consider sec-

ond order approximations, as discussed in Tsai (2003); Hjort & Claeskens (2003b). The mean

squared error formulae for both the nonparametric and parametric models would then get addi-

tional, possibly non-zero, squared bias and variance terms of size Op(n
−2), which ought to be

estimated in renewed FIC formulae. Such an extension should intentionally lead to better small

samples properties. This may also turn the other way, however, as estimation of the additional

quantities introduces more variability in the final FIC score, being particularly crucial for small

sample sizes.

From a practical point of view, easing the access to the methodology and making it more readily

available for practitioners, would be a vital contribution. When working with each of the four

papers, fairly general functionality has been prepared in the statistical programming language R

(R Core Team, 2015). To make the FIC methodology more accessible, I hope to gather the FIC-

related functionality in an R-package to be put on ‘CRAN’. For the methodology in Paper IV, a

first step would rather be an implementation in a pre-compiled language which permits efficient

use of large number of high performance cores for parallelisation, when such are available.

Finally, the generality of the method presented in Paper IV allows for applications, not only

to CO2 monitoring, but also in general reservoir characterisation and exploration. However, it

ought to be worth investigating the possibilities for applying this methodology to more general

Bayesian inversion problems, also outside the geophysical/rock physical inversion setting. In

the absence of relevant expertise, it is difficult to list other fields to which our methodology

would apply, but ‘interpretation’ of X-ray, magnetic resonance (MR), and related data appear to

be potential candidates.

6.2 New vs. original FIC

Whereas essentially all previous developments of the FIC have been conducted inside local mis-

specification frameworks, those in Papers I, II and III are developed without such assumptions

– as described in the above summary of Paper I. This, in addition to our inclusion of a non-

parametric (or semiparametric) candidate model, is the main difference between the two FIC

construction strategies which ought to be discussed and compared below.

The local misspecification framework underlying the original FIC and AFIC have received some

critique. Raftery & Zheng (2003); Ishwaran & Rao (2003) indicate that the framework is un-

realistic, and suggest it does not yield a valid environment for model selection. As pointed out

in Hjort & Claeskens (2003b) and Claeskens & Hjort (2008a, Remark 5.3), the framework is

not intended to be completely trusted per se, but should merely be perceived as a construction

to derive sound asymptotic results, which then are estimated and interpreted in a usual finite

sample fashion. The critique is however not completely uncalled for. Although one reaches

neat asymptotic results which are perfectly valid within this framework, there is no guarantee

that these will hold or be informative in practical applications. Further, even if one accepts that
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the results are informative when the true model is close to all candidates, they are hardly of

much relevance if one or more models are far off. Nonetheless, similar frameworks have been

utilised in other settings and seem to be acknowledged as informative; see e.g. Lehmann (1998,

Ch. 3.3) for an application to a study of test power.

On another note, the local misspecification framework requires all competing models to be

nested. That is, they all need to be special cases of a ‘wide’ model where all γ-parameters

are being estimated, and, at the same time, extensions of a ‘narrow’ model without these γ-

parameters. When none of the candidate models encompass all the others, the natural solution

is to define such a ‘wide’ model. This strategy requires a number of extra ‘nuisance’ parameters

to be defined, solely for the purpose of making the asymptotics work out. If several such

extra parameters need to be estimated as part of the FIC apparatus, the estimation accuracy

of the FIC scores may be significantly weakened. Differently constructed wide models may

also give different FIC scores. A benefit of the local misspecification framework is that it

provides asymptotics for quite general model average estimators (Hjort & Claeskens, 2003a).

In particular, this allows for quantification of the post selection uncertainty, i.e. the uncertainty

associated with the model selection step which is often ignored; cf. Breimans ‘quiet scandal of

statistics’ (Breiman, 1992).

A conceptual advantage of our FIC approach is that we do not make any distributional assump-

tions relating the parametric candidate models to the (unknown) true model. Furthermore, since

our approach does not rely on a local misspecification framework, the approach is immune to

the aforementioned critique. The introduction of the nonparametric model also has several ben-

eficial consequences. One of them is that it gives the criteria an insurance mechanism against

poorly specified parametric models – a property virtually no other type of information criterion

possess. Principally speaking, our criteria typically select fine-tuned parametrics when they are

adequate, and trust nonparametrics when the parametric models are far off. Another benefit is

that it, in contrast to the original FIC, gives model robust estimates of the bias involved in the

parametric model. A possible drawback of trusting the nonparametric model and estimator so

heavily, is that the FIC scores become more sensitive to changes in the data. Smoothing may

help for that matter, though. Under appropriate and weak regularity conditions, Fernholz (1991)

shows that the integrated kernel estimator (cf. (2.7)) has the same asymptotic properties as the

empirical distribution function, allowing nonparametric estimation to be based upon the former

instead.

Another possible drawback of our more flexible FIC approach is that it is rather difficult to

extend the approach to the classical regression setup and density estimation – extensions which

are fairly straightforward for the original FIC. The additional complexity for our approach is

caused by the nonparametric estimator, whose convergence rate is slower in these situations.

The joint limit distribution of parametric and nonparametric focus parameter estimators then

takes a different form, having further complicating consequences for estimation of the approx-

imated mean squared errors. These situations essentially require a slightly different approach,

see Jullum & Hjort (2016, Sections 7.4 and 7.5).

In the supplementary material to Paper I, we compare the original FIC approach to our new pro-

posed FIC on the former’s ‘home turf’, i.e. in the local misspecification framework. Assuming
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the parametric models are indeed nested, we find precise limiting distributions for the two types

of FIC formulae, allowing us to compare the two criteria in this local asymptotics framework.

We find that the two schemes are asymptotically equivalent (in the local misspecification limit

sense) when the widest parametric model has the same variance as the nonparametric estimator.

In addition, the new parametric FIC scores may be seen as model robust versions of those in the

original FIC.

Claeskens & Hjort (2003, Sec. 8) touch upon, but does not fully develop, a robust version of the

FIC, denoted the focused robust information criterion (FRIC). This criterion uses a more general

local misspecification framework, whose most general variant is completely unrelated to the

candidate models. Although it is not emphasised by the authors themselves, such a framework

should in principle work with non-nested candidate models. The FRIC has not received much

attention in the consecutive literature, though.

6.3 Localising the inverse problem

The distinguishing feature of the procedure in Paper IV compared to most of those surveyed

in Section 4.3, is the decomposition of the global problem into many local problems. That

is, rather than dealing with the global posterior of the latent field, the procedure in Paper IV

approximates the marginal posterior distribution in each of the cells in the latent field. With

the variables involved being connected to certain locations, the data and model are usually

designed such that short range dependencies dominate.1 Hence, when concentrating on the

marginal posterior distribution in a certain location, variables connected to locations far from

the current cell would have a minimal impact. The dimensionality of the local problem is

effectively reduced by ignoring these low-impact variables. This protects against the curse of

dimensionality and is a key ingredient in Paper IV, as well as in Jullum & Kolbjørnsen (2015).

Localising the problem is indeed appropriate when local behaviour of the latent field is the focus

of the study. In the geoscience setting this translates to the case where cell-wise inference about

the rock properties are key – in contrast to drawing probabilistic statements about long range

dependencies, performing flow calculations, and so on. The latter situation essentially requires

a global solution. Note however that a straightforward extension of our approach allows our

methodology to approximate the joint posterior distribution in smaller neighbourhoods. This

enables also approximations of short range dependencies between the cells of the latent field,

which may be of interest in certain applications.

The local inversion approach handles the local problems one by one. Under stationarity condi-

tions, this allows for heavy parallelisation, ensuring that the methodology scales well. That is,

each of the separate local inversion problems may be handled by a separate core on the com-

puter when implemented in software allowing for parallelisation. This gives a significant and

beneficial speed-up when ran on a laptop or desktop computer with say four or possibly eight

cores. The real advantage comes into play when running the methodology on large computer

clusters, which may have several thousands of cores working in parallel. This is a substan-

1If this is not the case, it is typically possible to apply resolution theory to focus the energy, see Appendix C in

Paper IV.
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tial advantage over non-parallelisable methodology which needs to handle one task at the time,

especially for the large scale problems we are concerned with.

Although the localisation of the problem incurs an error, it seems to give fairly reasonable

results in a situation where the number of appropriate alternatives are few. It is evident from the

investigation in Paper IV that, in terms of predictive performance, our approach outperforms the

frequently applied direct Gaussian inversion approach of Buland & Omre (2003). There is also

an incredible speed-up compared to ‘brute-force’ MCMC. For a particular inversion problem of

dimension 140, our approach gives results in seconds, while the MCMC implementation uses

days to deliver reliable results.

Note finally that localisation of the geophysical/rock physical inversion problem is not an en-

tirely new concept, being a key component in for instance Buland et al. (2008). In fact, a variant

of the approach in Buland et al. (2008) may be seen as a special case of our approach.

6.4 The leitmotifs and frequentist vs. Bayesian statistics

“An approximate answer to the right problem is worth a good deal more than an

exact answer to an approximate problem.”

John Tukey

This quote sort of sums up the underlying intention of the methodologies developed in this

thesis. Asking the right question is indubitably essential whether one is faced with a model

selection problem, an inverse problem, or any other kind of inference problem. From my point

of view, focusing the energy on the precise question with which one is concerned, is a natural

and indispensable principle which should be followed in all inferential problems.

Focus. The focused view is certainly glaring in the model selection methodology in Papers

I-III. After forcing the data analyst to sharpen his or her question(s) by describing one or more

focus parameters, the FIC and AFIC apparatuses concentrate unconditionally on finding the

model with the best estimate(s) of the μ. Additionally, in the approximation Bayesian inversion

methodology in Paper IV, the challenge is focused and reduced from a global inverse problem to

several local inverse problems. The methodology is then tuned specifically towards approxima-

tions of the marginal posterior distribution in each of the cells, for the rock property chosen for

scrutiny. It is irrelevant whether or not the various likelihood approximations are appropriate on

a global scale, or for the neighbouring cell, as long as the variables related to the cell in focus

are reasonable.

Approximation. Despite the technological developments in recent time, computational ad-

vances has not yet reached a level where inferential approximations are avoidable – and proba-

bly never will. In the model selection frameworks we employ the powerful toolbox of asymp-

totic theory to work around the finite sample distributional complexities. We particularly rely

on finite sample approximations to the mean squared errors which generally hold only as the

sample size tends to infinity. In Paper IV there are several layers of approximation, including

discarding variables far from the cell under current inversion, and approximating the general

likelihood by a Gaussian distribution.
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Finally, working with both frequentist and Bayesian methodology, I am sometimes asked how

I can ‘play for both teams’ and whether I am really a frequentist or a Bayesian. I then reply

saying I am the ‘glory-hunter’ fan who cheers for the frequentists when they are doing well,

and the Bayesians when they are doing well. Despite my efforts, I do not understand those

claiming one needs to choose one or the other. The way in which the Bayesian approach enables

quantifiable prior information to be incorporated into the inferential analysis really speaks to me.

If information (for instance from past studies) is really there, it seems absurd not to utilise it.

On the other hand, when such information is not available, I find the frequentist approach more

appealing than the Bayesian solution of constructing non-informative (objective) priors. The

use of flat priors, for instance, often carry with them unintentional side-effects (Simpson et al.,

2014). I also find it hard to argue against the frequentist approach to hypothesis testing – except

possibly for the artificial way in which the threshold value typically is set. Both approaches

have their strengths and weaknesses, and I allow myself the luxury of using the best pieces

of the two worlds. Like Irizarry (2014), I would be happy to see the Bayesian vs. frequentist

debate to be declared over.

In summary, with our frequentist and Bayesian approaches, we obtain approximate answers to

the precise focused questions being raised – just as John Tukey prefers.
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PARAMETRIC OR NONPARAMETRIC: THE FIC APPROACH FOR
STATIONARY TIME SERIES

Gudmund Hermansen, Nils Lid Hjort and Martin Jullum
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Abstract. We seek to narrow the gap between parametric and nonparametric mod-

elling of stationary time series processes. The approach is inspired by recent advances

in focused inference and model selection techniques. The paper generalises and extends

recent work by developing a new version of the focused information criterion (FIC), di-

rectly comparing the performance of parametric time series models with a nonparametric

alternative. For a pre-specified focused parameter, for which scrutiny is considered valu-

able, this is achieved by comparing the mean squared error of the model-based estimators

of this quantity. In particular, this yields FIC formulae for covariances or correlations at

specified lags, for the probability of reaching a threshold, etc. Suitable weighted average

versions, the AFIC, also lead to model selection strategies for finding the best model for

the purpose of estimating e.g. a sequence of correlations.

Key words: focused inference, model selection, time series modelling, risk estimation

1. Introduction and summary

The focused information criterion (FIC) was introduced in Claeskens & Hjort (2003)

and is based on estimating and comparing the accuracy of model-based estimators for a

chosen focus parameter. This focus, say μ, ought to have a clear statistical interpretation

across candidate models. For a given candidate model, μ is traditionally expressed as a

function of this model’s parameters. In general, the focus parameter can be any sufficiently

smooth and regular function of the underlying model parameters, or more generally its

spectral distribution. This includes quantiles, regression coefficients, a specified lagged

correlation, but also various types of predictions and data dependent functions, to name

some; see Hermansen & Hjort (2015) for a more complete list and discussion of valid focus

parameters for time series models.

Suppose there are candidate models M1, . . . ,Mk, leading to focus parameter estimates

μ̂1, . . . , μ̂k, respectively. The underlying idea leading to the FIC is to estimate the mean

squared error (mse) of μ̂j for each candidate model and then select the model that achieves

the smallest value. The mse in question is

msej = E (μ̂j − μtrue)
2 = bias(μ̂j)

2 +Var μ̂j,

Date: December 2015.

1



FIC FOR STATIONARY TIME SERIES 2

comprising the variance and the squared bias in relation to the true parameter value μtrue.

Thus the FIC consists of finding ways of assessing, approximating and then estimating the

msej for each candidate model. The winning model is the one with smallest m̂sej. How

this may be done depends on both the candidate models and the focus parameter, as well

as on other characteristics of the underlying situation. The FIC apparatus hence leads

to different types of formulae in different setups; see Claeskens & Hjort (2008, Ch. 5 &

6) for a fuller discussion and illustrations of such criteria for selection among parametric

models.

Most FIC constructions have been derived by relying on a suitably defined local

misspecification framework, see again Claeskens & Hjort (2008, Ch. 5 & 6). In such

a framework the true model is assumed to gradually shrink with the sample size, starting

from the biggest ‘wide’ model and hitting the simplest ‘narrow’ model in the limit. In

addition, and all candidate models need to lie between these two model extremes. In the

various data settings, such frameworks typically result in squared biases and variances of

the same asymptotic order, motivating certain approximation formulae for the m̂sej in

question. In Hermansen & Hjort (2015) such a framework is used to derive FIC machinery

for choosing between parametric time series models within broad classes of time series

models. See Section 7.5 for some further remarks.

The aim of the present paper is to derive FIC machinery which will justify comparison

and selection among both parametric and nonparametric candidate models. The deriva-

tion will be somewhat different from that of Claeskens & Hjort (2003) and Hermansen

& Hjort (2015) in that we do not rely on a certain local misspecification framework.

We rather take a more direct approach following reasoning similar to the development

of Jullum & Hjort (2015), where focused inference and model selection among paramet-

ric and nonparametric models are developed for independent observations. By including

a nonparametric candidate among the parametric models, we will in particular be able

to detect whether our parametric models are off-target. This FIC construction, with a

nonparametric alternative, therefore has a built-in insurance mechanism against poorly

specified parametric candidates. When one or more parametric models are adequate, such

are selected as they typically have lower variance.

Though our methods will be extended to more general setups later, we start our de-

velopments with the class of zero-mean stationary Gaussian time series processes. Let

{Yt} be such a process. Then the dependency structure, which in such cases deter-

mines the entire model, is completely specified by the corresponding covariance function

C(k) = cov(Yt, Yt+k), defined for all lags k = 0, 1, 2, . . .. Here we will, for mathematical

convenience, work with the frequency representation, where the covariance function C(k)
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can be represented by a unique spectral distribution G such that

C(k) =

∫ π

−π

eikω dG(ω) = 2

∫ π

0

cos(kω)g(ω) dω, (1.1)

provided the corresponding spectral distribution G has a continuous and symmetric den-

sity g. See among others Brillinger (1975), Priestley (1981) or Dzhaparidze (1986) for a

general introduction to time series modelling in the frequency domain. When necessary,

we will write Cg to indicate that this is the covariance indexed by the spectral density

g. Note also that we can obtain the spectral density as the Fourier transform of the

covariance function.

The types of parametric models we will consider are typically the classical autore-

gressive (AR), moving average (MA) and the mixture (ARMA), all of which have clear

and well defined corresponding spectral densities; see e.g. Brockwell & Davis (1991) for

an introduction to time series modelling with such models. Note that the theory devel-

oped here is general, and that there is nothing other than convenience that restricts us to

these particular classes of parametric models. For an observed series y1, . . . , yn, the raw

periodogram

In(ω) =
1

2πn

∣∣∣∣ n∑
t=1

yt exp(iωt)

∣∣∣∣2, for − π ≤ ω < π, (1.2)

will be our favourite nonparametric model for the underlying spectral density. The main

reason for not considering variations of smoothed or tapered periodogram estimators is

that we are interested in focus parameters that involves functions of the integrated spec-

trum, which essentially is a type of smoothing, rendering the pre-smoothing of the raw

periodogram less critical and often unnecessary.

We will start out considering a class of focus functions of the type

μ(G;h0) =

∫ π

−π

h0(ω) dG(ω), (1.3)

where h0 is a piecewise continuous and bounded function on [−π, π], with potentially a

finite number of jump discontinuities. This class includes e.g. the covariance function,

which is easily seen from (1.1) above, and allows studying specific parts of the spectral

density by using indicator functions; see also Gray (2006) for further illustrations involving

quantities of type (1.3).

Finding the best model to estimate the integrated spectrum (or total power/energy)

over a specific region, may be an interesting and important applications in several areas

of research; like pharmacology, astronomy, oceanography and in the interpretation of

seismic data. The reason is that in all of these situations the observed time series is

converted into the associated spectra, where the processed spectral density and especially

the energy over certain regions of frequencies, have clear interpretations. For example, in
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Figure 1.1. The true spectral density and the raw periodogram from a simulated au-

toregressive time series of order 4, with length n = 100 and parameters

ρ = (0.2, 0.2,−0.1,−0.2) and σ = 1.30. The shaded regions corresponds to

three different focus parameters, namely, the integrated spectrum (or total

energy) over that particular region.

pharmacology the spectrum of EEG/ERP signals may be used to quantify certain brain

functions, indicating e.g. the effect of a potential drug. In such applications, the different

models may not always have clear interpretations as time series, per se. The FIC is

nevertheless able to rank the fitted models in terms of estimated precision of estimates,

for the focus parameter in question. This general idea and particular usage of the FIC is

illustrated in Figures 1.1 and 1.2 using simulated data from an autoregressive model of

order 4, for focus parameters

μj =

∫ π

0

I(aj ≤ ω < bj)g(ω) dω = G(bj)−G(aj),

for j = 1, 2 and 3, for the corresponding intervals (aj, bj) ⊂ [0, π); which are marked by

the shaded regions in Figure 1.1. The candidate models are the autoregressive models

of order 0–4 and a nonparametric alternative based on integrating the raw periodogram

(1.2). The AR-model of order 0 corresponds to the independence model. Here, the FIC

works well: For each focus parameter it prefers models that all results in estimates that

are reasonably close to the true value; which in terms if rmse (and absolute deviation

from the truth) is not always the nonparametric or true model of order 4. Moreover,

this example also illustrates a second and important concept, namely, that one and the

same model is not necessarily best for all focus parameters. Note that the FIC prefers an

AR(3), AR(4) and AR(1) for the respective regions 1, 2, 3.
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Figure 1.2. The horizontal lines indicate the true spectral density over the three shaded

regions (of the same colour) shown in Figure 1.1; the three focus parameters

μ1, μ2 and μ3. The corresponding coloured dots show the performance, in

terms of the root of the FIC score for the nonparamteric model based on

the periodogram (n) and the autoregressive models of order 0–4, where 0

represent the model with independent.

A class of focus parameters wider than that of (1.3) takes focus parameters of the

form

μ(G;h,H) = H(μ(G;h1), . . . , μ(G;hk))

= H
(∫ π

−π

h1(ω) dG(ω), . . . ,

∫ π

−π

hk(ω) dG(ω)
)
,

(1.4)

for a k-dimensional vector function h(ω) = (h1(ω), . . . , hk(ω))
t, where each of the hj is

of the above type, and H(x1, . . . , xk) a continuously differentiable function of the xj =

μ(G;hj), j = 1, . . . , k. The direct correlations

corr(Yt, Yt+k) =
cov(Yt, Yt+k)

σ2
=

C(k)

C(0)
=

∫ π

0
cos(kω) dG(ω)∫ π

0
dG(ω)

,

for example, are of type (1.4). Another class of estimands captured by (1.4) are conditional

threshold probabilities, say P{Yn+1 ≥ y |Yn = yn, . . . , Yn−k = yn−k}, as these are functions
of the (k+1)× (k+1) covariance matrix for (Yn−k, . . . , Yn, Yn+1). Later results will allow

us to reach FIC formulae for this more general class.

In Section 2 we provide a brief overview of some standard results needed to obtain

good estimates for various mean squared error quantities. Among other aspects we need

properties of maximum likelihood- or Whittle approximated estimators outside the model,

and some large-sample results regarding the periodogram. Then in Section 3 we motivate

and develop such mean squared error estimators, leading to FIC formulae. In Section 4 we
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show that under certain conditions, a detrended time series may be handled by our FIC

scheme as if it was the original time series. In Section 5 we extend the FIC methodology

by deriving an average weighted focused information criterion which aims at selecting the

best model for estimating a full set of focus parameters, possibly weighted to reflect their

relative importance for the analysis. In Section 6 we discuss certain theoretical behavioural

aspects of the derived FIC scheme, and present the results from a simulation study. Some

concluding remarks, some of which pointing to future work, are finally provided in Section

7.

2. Estimation and approximations

We start out investigating the behaviour of the two most common parametric esti-

mation procedures, those based on the maximum likelihood method and the associated

Whittle approximation to the log-likelihood. We also give some basics for nonparametric

modelling.

2.1. Maximum likelihood estimation outside the model. Let y
n
= (y1, . . . , yn)

t be

a collection of n realisations from a zero mean stationary Gaussian time series process

with spectral distribution function G and corresponding spectral density g. Furthermore,

let the spectral distribution function Fθ and its corresponding spectral density fθ = f(·; θ)
index an arbitrary parametric candidate model, where θ belongs to some parameter space

Θ of dimension say p. The corresponding full log-likelihood is

�n(θ) = −n

2
log(2π)− 1

2
log |Σn(fθ)| − 1

2
yt
n
Σn(fθ)

−1y
n
, (2.1)

where Σn(fθ) is the covariance matrix with elements

Cfθ(|s− t|) = 2

∫ π

0

cos(ω|s− t|)fθ(ω) dω

for s, t = 1, . . . , n. Since the class of parametric candidate models is not assumed to

necessarily include the true g, the maximum likelihood estimator does not converge to a

‘true’ parameter value. Instead it converges to the so-called least false parameter value,

i.e. θ̃n = argmaxθ{�n(θ)} →p argminθ{d(g, fθ)} = θ0, where

d(g, fθ) =
1

4π

∫ π

−π

{ g(ω)

fθ(ω)
− 1− log

g(ω)

fθ(ω)

}
dω

= − 1

4π

∫ π

−π

{log g(ω) + 1} dω −R(G, θ),
(2.2)

and where

R(G, θ) = − 1

4π

∫ π

−π

{
log fθ(ω) +

g(ω)

fθ(ω)

}
dω
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may be referred to as the model specific part, see e.g. Dahlhaus & Wefelmeyer (1996) for

details. Furthermore, it can be shown that

√
n(θ̃n − θ0) →d J

−1
0 U ∼ Np(0, J

−1
0 K0J

−1
0 ), where U ∼ Np(0, K0), (2.3)

with J0 and K0 defined by

J0 = J(g, fθ0)

=
1

4π

∫ π

−π

[
∇Ψθ0(ω)∇Ψθ0(ω)

tg(ω) +∇2Ψθ0(ω){fθ0(ω)− g(ω)}
] 1

fθ0(ω)
dω

and

K0 = K(g, fθ0) =
1

4π

∫ π

−π

∇Ψθ0(ω)∇Ψθ0(ω)
t
{ g(ω)

fθ0(ω)

}2

dω,

where Ψθ(ω) = log fθ(ω). and ∇Ψθ(ω) and ∇2Ψθ(ω) are respectively the vector of partial

derivatives and matrix of second order partial derivatives with respect to θ, see Dahlhaus

& Wefelmeyer (1996, Theorem 3.3). Note that J0 = K0 under model conditions.

2.2. The Whittle approximation. The Whittle pseudo-log-likelihood is an approxi-

mation to the full Gaussian log-likelihood �n of (2.1). It was originally suggested by

P. Whittle in the 1950s (cf. Whittle (1953)), and is defined as

�̂n(θ) = −1
2
n
[
log(2π) +

1

2π

∫ π

−π

log{2πfθ(ω)} dω +
1

2π

∫ π

−π

In(ω)

fθ(ω)
dω
]
, (2.4)

where In(ω) = (2πn)−1|∑t≤n yt exp(iωt)|2 is the periodogram. This approximation is

close to the full Gaussian log-likelihood in the sense that �n(θ) = �̂n(θ) + Op(1) uni-

formly in f , see Coursol & Dacunha-Castelle (1982). More important here, however, is

that (2.4) motivates an alternative estimation procedure, namely the Whittle estimator

θ̂n = argmaxθ{�̂n(fθ)}. This estimator is easier to work with in practice (both analytically

and numerically) and shares several properties with the maximum likelihood estimator.

In particular
√
n(θ̂n − θ0) achieves the same limit distribution as in (2.3), with the same

least false parameter value θ0 as defined in relation to (2.2); see Dahlhaus & Wefelmeyer

(1996) for details. This means that in a large-sample perspective, the maximum like-

lihood estimator and the simpler Whittle estimator are equally efficient and essentially

interchangeable.

2.3. Nonparametric modelling. As mentioned in the introduction, we shall use the

periodogram in (1.2) for nonparametric modelling. Under appropriate short memory con-

ditions, it follows from Brillinger (1975, Theorem 5.5.2) that E{In(ω)} = g(ω) +O(n−1),

i.e. that the periodogram is asymptotically unbiased as an estimator of the spectral den-

sity. We shall thus use

Ĝn(ω) =

∫ ω

−π

In(u) du, (2.5)
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as a canonical estimator for the spectral distribution G; for which

√
n(Ĝn(ω)−G(ω)) →d N

(
0, 4π

∫ ω

−π

g(u)2 du

)
,

see e.g. Taniguchi (1980).

3. Parametric versus nonparametric

We shall now obtain large-sample approximations for the focus parameter estimators.

These shall then be used to construct approximate mse formulae for each model’s estimator

of the focus parameter. When estimated these mses then give the FIC formulae.

3.1. How to compare parametric and nonparametric models? In completely gen-

eral terms, let μ(G) be a focus function, i.e. a functional mapping of the spectral distri-

bution G to a scalar value. This may be estimated parametrically by estimators of the

form μ̂pm = μ(F
̂θn
), or nonparametrically by μ̂np = μ(Ĝn). Other estimators of θ and G

may also be used, however. Typically, the collection of parametric candidate models does

not include the true G. The question is then which model should we use – parametric or

nonparametric – for estimating the focus parameter.

Assume for the nonparametric and each of the parametric candidate models that

√
n(μ̂np − μtrue) →d N(0, vnp) and

√
n(μ̂pm − μ0) →d N(0, vpm),

where μtrue = μ(G) is the true value of the focus parameter and μ0 = μ(Fθ0) is the focus

function evaluated under the least false parametric model Fθ0 as discussed in relation

to (2.2). Then, without going into details, the large-sample results above motivate the

following first-order approximations for the mse of the estimated focus parameters:

msenp = 02 + vnp/n = vnp/n and msepm = b2 + vpm/n, (3.1)

where b = μ0 − μtrue. The remainder of this section will be used to motivate and obtain

good estimators for the mean squared errors in (3.1) with the class of focus paramters of

the form μ(G;h0) defined in (1.3), and the more general μ(G;h,H) in (1.4).

3.2. Deriving unbiased risk estimates. In the derivation below, the parametric can-

didates Fθ will be fitted using the Whittle estimator θ̂n as defined in (2.4), while we will

use the canonical periodogoram based estimator in (2.5) for nonparametric estimation of

the spectral distribution G.

Using the Whittle estimator in collaboration with (2.5) results in a convenient simplifi-

cation of the derivations below; extending the arguments to full ML estimation is relatively

straightforward, using techniques in Dahlhaus & Wefelmeyer (1996). This motivates the
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following nonparametric and parametric estimators for focus parameters μ(G;h0) on the

form of (1.3):

μ̂np =

∫ π

−π

h0(ω)In(ω) dω =
1

n
yt
n
Σn(h0)yn and μ̂pm =

∫ π

−π

h0(ω)f̂θn(ω) dω,

where Σn(h0) is a n × n-dimensional symmetric Toeplitz matrix, having elements of the

general form

σn,s,t(h0) =

∫ π

−π

cos(ω|s− t|)h0(ω) dω.

for s, t = 1, . . . , n. The following proposition establishes the joint limit distribution for

the estimators above (suitably normalised), which in turn will be used to obtain good

approximations for their respective mean squared errors.

Proposition 1. Let y1, . . . , yn be realisations from a stationary Gaussian time series

model with spectral density g assumed to be uniformly bounded away from both zero and

infinity. Suppose |h0| is bounded in ω, that fθ is two times differentiable with respect to θ,

and that fθ and these derivatives, ∇fθ and ∇2fθ, are continuous and uniformly bounded

in both ω and θ in a neighbourhood of the least false parameter value θ0 as defined in

(2.2) above. Then(√
n(μ̂np − μtrue)√
n(μ̂pm − μ0)

)
→d

(
X0

ct0J(g, fθ0)
−1U

)
∼ N2

((
0

0

)
,

(
vnp vc

vc vpm

))
, (3.2)

where

vnp = 4π

∫ π

−π

{h0(ω)g(ω)}2 dω and vpm = ct0J(g, fθ0)
−1K(g, fθ0)J(g, fθ0)

−1c0,

with J and K as defined below (2.3), and vc = ct0J(g, fθ0)
−1d0, where the c0 is the partial

derivative of μ(Fθ0 ;h) with respect to θ, i.e. c0 = ∇μ(Fθ0 ;h) =
∫ π

−π
h0(ω)∇fθ0(ω) dω and

d0 = cov(X,U) =

∫ π

−π

∇fθ0(ω)h0(ω)g(ω)
2

fθ0(ω)
2

dω.

Proof. It follows from the results in (Dzhaparidze, 1986, Ch. 2) that θ̂n−θ0 = J(g, fθ0)
−1Un+

op(1/
√
n), where Un = ∇�̂n(fθ0) and

Un = −1
2
{Tr(Σn(∇Ψθ0))− yt

n
Σn(∇Ψθ0/fθ0)yn},

where Ψθ0 = log fθ0 and ∇Ψθ0 is the vector of its partial derivatives. As a conse-

quence, a Taylor expansion motivated by the standard delta method gives μ̂pm − μ0 =

ct0J(g, fθ0)
−1Un + op(1/

√
n). Since

√
nUn →d U by the assumptions of the proposition

(Dzhaparidze, 1986), the parametric part of the result holds. In addition

Xn = (μ̂np − μtrue) =
1

n
yt
n
Σn(h0)yn − μtrue,
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which can be shown, by a modified version of the argument leading to the limit distribution

of Un, to have the property that
√
nXn →d X0 ∼ N(0, vnp). This proves the nonparametric

part of the result. We finally need to show that these convergence results hold jointly.

Since the two drivers in the derivation of the limit distribution, yt
n
Σn(h0)yn/n and Un,

are quadratic forms, the joint limit distribution is readily obtainable by a Cramér–Wold

type of argument. To see how, let a be a vector in R2 to be used in the Cramér–Wold

argument, and define

Λn = a1
√
nXn + a2

√
nUn =

1√
n
yt
n
Σn(a1h0 + a2∇Ψθ0/fθ0)yn + γn

where γn =
√
n{a1μtrue − a2Tr(Σn(∇Ψθ0))/2}. The γn cancels out the mean, here, such

that Λn has mean zero. This is once again just a quadratic form, hence, Λn is normal

under the assumptions of the proposition; see Dzhaparidze (1986) or Hermansen & Hjort

(2014b) for derivations of a similar type. The proof is completed by observing that by

Dahlhaus & Wefelmeyer (1996, Lemma A.5), the covariances take the relevant form

cov(Xn, Un) =
2

n
Tr{Σn(h0)Σn(g)Σn(∇Ψθ/fθ)Σn(g)} →

∫ π

−π

∇fθ0(ω)h0(ω)g(ω)
2

fθ0(ω)
2

dω.

�

We next extend the above proposition to the more general class of We next extend

the above proposition to the more general class of focus parameters μ(G;h,H) in (1.4),

being a continuously differentiable function of a finite number of the μ(G;h0) functions.

The nonparametric and parametric estimators for this class take the form

μ̂np = H
(
n−1yt

n
Σn(h1)yn, . . . , n

−1yt
n
Σn(hk)yn

)
and

μ̂pm = H
(∫ π

−π

h1(ω)f(ω; θ̂n) dω, . . . ,

∫ π

−π

hk(ω)f(ω; θ̂n) dω
)
.

Proposition 2. Under the conditions of Proposition 1 the focus parameters μ(G;h,H)

in (1.4), with estimators and estimands as above, fulfils(√
n(μ̂np − μtrue)√
n(μ̂pm − μ0)

)
→d

(
∇HnpX

∇Hpmc
tJ(g, fθ0)

−1U

)
∼ N2

((
0

0

)
,

(
vnp vc

vc vpm

))
, (3.3)

where

vnp = ∇Hnp{4π
∫ π

−π

{h(ω)g(ω)}2 dω}∇Ht
np and

vpm = ∇Hpmc
tJ(g, fθ0)

−1K(g, fθ0)J(g, fθ0)
−1c∇Ht

pm,

and vc = ∇Hpmc
tJ(g, fθ0)

−1d∇Ht
np, where ∇Hnp and ∇Hpm are the gradients of H

evaluated at respectively (μ(G;h1), . . . , μ(G;hk)) and (μ(Fθ0 ;h1), . . . , μ(Fθ0 ;hk)), c is the



FIC FOR STATIONARY TIME SERIES 11

k × p-dimensional matrix with rows given by ∇μ(Fθ0 ;hj), j = 1, . . . , k and

d = cov(X,U) =

∫ π

−π

∇fθ0(ω)h(ω)g(ω)
2

fθ0(ω)
2

dω.

Proof. By Propostion 1, we see that (3.2) holds for each μ(G;hj). Let now Xn,j =
1
n
yt
n
Σn(hj)yn − μtrue for j = 1, . . . , k. By extending the Cramér–Wold argument in Pro-

postion 1 to all of Xn,1, . . . , Xn,k, Un, we see that there is joint convergence for all these.

The standard (multivariate) delta method then completes the proof. �

Remark 1. From the underlying structure of the proof of Propositions 1 and 2, and

the arguments (of e.g. Dahlhaus & Wefelmeyer (1996) or Dzhaparidze (1986)) used to

show that the Whittle estimator has the same large-sample properties as the maximum

likelihood estimator, it is clear that the conclusions of the two propositions stays true if

we replace Whittle with full maximum likelihood estimation.

The nonparametric estimator is by construction unbiased in the limit; an estimate for

the risk is therefore easily obtained from the variance formula above. For the parametric

candidate, we need in addition an unbiased estimate for the squared bias. Following

Jullum & Hjort (2015) we start with b̂ = μ̂pm − μ̂np as an initial estimate for b = μ0 −
μtrue. Since it follows from (3.2) that

√
n(̂b − b) →d ctJ−1U − X ∼ N(0, κ), where

κ = vpm + vnp − 2vc, we have E b̂2 ≈ b2 + κ/n + o(1/n). This leads to mse estimators of

the form

FICnp = m̂senp = v̂np/n,

FICpm = m̂sepm = b̂sq + v̂pm/n = max(0, b̂2 − κ̂/n) + v̂pm/n.
(3.4)

For the most general focus parameter formulation in (1.4), the variance and covariance

estimators take the form

v̂np = ∇Ĥnp{2π
∫ π

−π

h(ω)2In(ω)
2 dω}∇Ĥt

np, and

v̂pm = ∇Ĥpmĉ
tJ(In, f̂θn)

−1K(In/
√
2, f

̂θn
)J(In, f̂θn)

−1ĉ ∇Ĥpm,

where ĉ = (∇μ(F
̂θn
;hk), . . . ,∇μ(F

̂θn
;hk))

t, ∇Ĥnp and ∇Ĥpm are the gradients of H evalu-

ated at respectively (μ(Ĝn;h1), . . . , μ(Ĝn;hk)) and (μ(F
̂θn
;h1), . . . , μ(F̂θn

;hk)), and J and

K are as defined in relation to (2.3) – using In(w)
2/2 as the canonical nonparametric

unbiased estimator for g(w)2. These are all consistent according to Taniguchi (1980); Deo

& Chen (2000).

With FIC scores as above, representing clear-cut estimates of the risk of the nonpara-

metric and parametric models’ estimators of μ, our model selection strategy turns out as

follows: Compute the FIC score for each candidate model, rank them accordingly, and

select the model and estimator associated with the smallest FIC score. The same FICpm
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formula (with different estimates and quantities) is used for all of the possibly m different

parametric candidate models for simultaneous selection among the m+1 models. This is

perfectly fine as the FICpm formula does not depend on the other parametric models.

Although we have concentrated on focus functions μ(G;h) and μ(G;h,H) given by

(1.3-1.4), our focused model selection strategy applies also to more general focus parame-

ters, as long as joint limit distributions like (3.2) and (3.3) may be proven. In completely

general terms, our results may be generalised to focus parameters of the form μ = T (G)

for well-behaved functionals T mapping the spectral distribution G to a scalar value. The

type of smoothness required for T is in fact that the functional is so-called Hadamard dif-

ferentiable at G and Fθ0 , see e.g. van der Vaart (2000, Theorem 20.8) for further details.

This allows us, for instance, to handle focus parameters involving quantiles of the spectral

distribution G. It is also possible to extend the arguments to other parametric estima-

tion procedures, especially if they are derived as minimisers of the empirical analogue of

argmin{R(G, θ)} for R the model specific part of possibly different divergence measure

than in (2.2), see Dahlhaus & Wefelmeyer (1996) and Taniguchi (1980) for alternatives.

4. Models with trends

So far we have only considered stationary time series with mean zero. In real appli-

cations, this is often an unrealistic assumption to make. Even if the series is stationary,

the underlying mean is rarely exactly zero; the common solution in such cases is to de-

trend the series. In time series modelling, detrending usually refers to the act of removing

an estimated or deterministic trend from the observed series before the main analysis.

This may be a complex function of time and covariates including seasonal effects, or be

as simple as subtracting the arithmetic mean. A common approach is to work with the

detrended series, which we will denote by ŷt, and then analyse this series using models

for stationary time series, without factoring in the extra estimation uncertainty involved

in the detrending. This is often unproblematic, but even the innocent action of subtract-

ing the mean may have unforeseen consequences (typically for the so-called second order

properties). Hermansen & Hjort (2014b) shows that such a simple operation alter the

underlying motivation and interpretation of the AIC for stationary Gaussian time series.

Thus, special care is required for such an operation.

Suppose the observed series is generated by the model

Yt = m(xt, β) + εt, (4.1)

where the xt are p-dimensional covariates, the m is of known parametric structure, and

{εt} is a zero mean stationary Gaussian time series process with spectral distribution

function G and corresponding density g. Assume further that we are able to estimate β

by a suitable β̂n with reasonable precision. The question is then whether the results of
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Section 3 are still valid also with detrended data, such that we may still use the same FIC

formulae.

Proposition 3. Suppose the spectral densities g and fθ and function h satisfy the

conditions of Proposition 1, and that the assumed trend m and corresponding estimator

β̂ for the unknown β are such that
√
n(β̂n − β) = Op(1). Assume further that in a

neighbourhood of β we have

m(x, β̂n) = m(x, β) +∇m(x, β)t(β̂n − β) + rn(x),

with maxi |rn(xi)| = op(1/
√
n) and |∇m(x, β)| bounded in x. Then the conclusions of

Proposition 1 are still true if we replace yt with the detrended ŷt = yt −m(xt, β̂n).

Proof. We will show that the result follows as a corollary from certain general results

regarding limit behaviour of quadratic forms from Hermansen & Hjort (2014a, Section 3).

The argument is structured similarly to that of Proposition 1 and is built around

a Cramér–Wold type of argument. Observe that if we replace yt with the detrended

ŷt = yt −m(xt, β̂n), we now have X̂n = (ŷt
n
Σn(h0)ŷn − μtrue) and similarly

Ûn = −1
2
{Tr(Σn(∇Ψθ0))− ŷt

n
Σn(∇Ψθ0/fθ0)ŷn},

where ŷ
n
= (ŷ1, . . . , ŷn)

t. Again, for any a = (a1, a2) in R2, we now have

Λ̂n = a1
√
nX̂n + a2

√
nÛn = ŷt

n
Σn(a1h0 + a2∇Ψθ0/fθ0)ŷn/

√
n+ γn,

with γn as in the proof of Proposition 1. Then, according to Proposition 3.1 of Hermansen

& Hjort (2014a),

Λ̂n − Λn = op(n
−1/2)

where Λn = εtnΣn(a1h0 + a2∇Ψθ0/fθ0)εn/
√
n + γn, where εn = (ε1, . . . , εn)

t has elements

corresponding to (4.1). Since the limit behaviour of Λn is what defines the limit distribu-

tion in Proposition 1, the argument is essentially complete. �

The above proposition may also be extended to the focus parameter in (1.4), as

handled in Proposition 2. Traditionally, the least squares estimator has been the canonical

method for estimating β in models of the form of (4.1). As an illustration, consider the

linear regression model with dependent errors where Yt = xt
tβ + εt, for p-dimensional

covariates xt, and where {εt} is a zero mean stationary Gaussian time series process with

spectral density g. On matrix form this yields y
n
= Xβ + εn, where X is the related

n× p-dimensional design matrix. The ordinary least squares estimate for β is then given

by β̂n = (XtX)−1Xty
n
. Then, in order for β̂n to satisfy the conditions of Proposition

3, it is sufficient that nVar(β̂n) = n(XtX)−1XtΣn(g)X(XtX)−1 = o(1), which is clearly

satisfied if XtX/n →p Q1 and XtΣ(g)X/n →p Q2, as n approaches infinity, where Q1

and Q2 are both finite positive definite matrices. These are the standard assumptions
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needed to ensure consistency of both standard and generalised least squares for models

with correlated errors.

5. Average focused information criterion

We have so far concentrated on inference for a single focus parameter μ. A natural

generalisation of this is to consider several focus parameters joinly, say correlations of

orders 1 to 5. The FIC machinery can easily be lifted to such a situation, involving a

weighted average of FIC scores, the AFIC, with weights reflecting importance dictated by

the statistician.

Suppose in general terms that estimands μ(u) are under consideration, for u in some

index set. For each of these we have the nonparametric μ̂np(u) and one or more parametric

estimators μ̂pm(u). These typically have versions of Propositions 1 or 2, leading as per

(3.1) to

msenp(u) = 02 + vnp(u) and msepm(u) = b(u)2 + vpm(u),

with b(u) = μ0(u)−μtrue(u). These mean squared errors can then be combined, via some

suitable cumulative weight function W (u), to

risknp =

∫
vnp(u) dW (u) and riskpm =

∫
{b(u)2 + vpm(u)} dW (u)

Here dW (·) is meant to reflect the relative importance of the different μ(u), and should

stem from the statistician’s judgement and the actual context. Based on the data we may

now form the following natural estimates of these risk quantities:

AFICnp =

∫
v̂pm(u) dW (u),

AFICpm =

∫ [
max{b̂(u)2 − κ̂(u)/n}+ v̂pm(u)

]
dW (u).

(5.1)

This operation also needs the covariances vc(u), as κ̂(u) is to be constructed as the natural

estimator of κ(u) = vpm(u) + vpm(u)− 2vc(u).

The AFIC scheme (5.1) can be used in a variety of circumstances. A typical appli-

cation may involve assessing models for estimating a threshold probability P{Yn+1 ≥ a}
over a set of many a, again with a weight function w(a) indicating relative importance.

Another attractive application is for the task of estimating correlations corr(h) for lags

h = 1, 2, 3, . . ., perhaps with a decreasing w(h). The AFIC method may similarly be

applied for comparing the popular autorcorrelation function, such as acf in the statisti-

cal software package R (R Core Team, 2015), with potentially more accurate parametric

alternatives.
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6. Performance

In the present section we will discuss some behavioural aspects of the derived FIC

methodology. First we present some theoretical consequences of using our new FIC con-

struction for model selection. Then we discuss some issues related to the more practical

performance of this criterion, and illustrate some of these in a simulation study. The goal

is not to conduct a broad simulation based investigation, but rather show the potential of

having a criterion for selecting among parametric models and a nonparametric alternative

in a simple proof of concept type of illustration.

6.1. FIC under model conditions. Although we have been working outside specific

parametric model conditions when deriving the FIC (and AFIC) above, it is natural to ask

how the criteria selects when a parametric model is indeed correct. Consider however first

the case where a specific parametric candidate model is incorrect and have bias b �= 0.

From the structure of the FIC formulae in (3.4) and the consistency of the involved

variance and covariance estimators, we see that FICnp = op(1), while FICpm = Op(1) +

op(1) = Op(1). I.e. the squared bias term dominates completely, and the probability that

the FIC will select this particular parametric model will tend to 0 as n → ∞. If all the

parametric candidate models are biased in this sense, then the FIC will eventually prefer

the nonparametric model when the sample size increases.

Going more into detail, it is seen from the FIC formulae in (3.4) that the FIC prefers

a specific parametric model over the nonparametric whenever

max(̂b2 − κ̂/n, 0) + n−1v̂pm ≤ n−1v̂np.

Whenever v̂np ≥ v̂pm, this is seen to be equivalent to

Zn ≤ 2,

where Zn = (nb̂2)/(v̂np − v̂c).

It turns out that under model conditions, we have vc = vpm. This is rather straightfor-

ward to see by investigating the forms of vc and vpm involved in Proposition 2, in addition

to the forms of K0 and J0. Inserting g = fθ0 in these formulae reveals that K0 = J0,

∇Hnp = ∇Hpm and c = d and thereby vc = vpm. Now, due to the consistency, we have

v̂np − v̂c →p vnp − vpm. Further, the limit distribution result of
√
n(̂b − b) given above

(3.4) ensures that Zn →d χ
2
1, with χ2

1 a chi-squared distributed variable with one degree of

freedom. That is, the limiting probability that the parametric model will be selected over

the nonparametric when it is indeed true is P{Zn ≤ 2} → P{χ2
1 ≤ 2} ≈ 0.843. Thus, if

one of the parametric candidate models is correct, and the others have biases b �= 0, then,

for sufficiently large samples, the first parametric model and estimator will be selected
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with a probability tending to 84.3%, while the nonparametric will be selected in the other

15.7% proportion.
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Figure 6.1. Relative root-mse for each candidate model fitted to the six focus parame-

ters μk = C(k), for k = 0, . . . , 5. The root-mse is computed based on 5000

simulated AR(2) series of length n = 100, with σ = 1.0 and ρ = (0.7,−0.6),

For ease of comparison we have scaled the root-mse to the unit interval.
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Figure 6.2. The five least false covariance functions under the assumption that the true

model is an autoregressive model specified by the parameters σ = 1.0 and

ρ = (0.7,−0.6).
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6.2. FIC in practice. Figure 6.1 shows the relative root-mse for estimating the focus

parameter

μk = μ(G;hk) =

∫ π

−π

cos(ωk)g(ω) dω = Cg(k), for k = 1, . . . , 5, (6.1)

based on the following five candidates models: the independence model (autoregressive of

order zero); the autoregressive of orders one and two; the moving average of order one;

and finally the nonparametric one, where nothing more is assumed than saying that the

series is stationary with a finite variance. The true model is an autoregressive model

specified by the parameters ρ = (0.7,−0.6) and σ = 1.0. This means that all but two, the

autoregressive model of order two and the nonparametric model, are misspecified. The

corresponding least false covariance estimates are plotted in Figure 6.2. In the simulation

study, we have used B = 5000 repetitions of length n = 100 to compute the actual

relative root-mse values for each candidate. Note that since we have included the true

model among our candidates, nonparametric estimation is never the optimal choice; it is

however often close and it is the second best choice for lags 1 and 3. For lags 2 and 5,

where the true values are close to zero, the simpler models, like AR(0) and MA(1), are

highly successful, achieving reasonably low bias and also low variance.

Figure 6.3. The proportion for which the different criteria selects the model with the

theoretical lowest root-mean-squared error. The model-selectors are always

nonparametric, FIC, AIC and BIC. The results are based on 5000 simulated

series.

In Figure 6.3 and 6.4 we further investigate the performance of the FIC. Here, we

compare our FIC machinery with three other model selection strategies, (i) to always use
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the nonparametric model, (ii) select the best parametric model according to the AIC and

(iii) the parametric model selected by the BIC. Note that the AIC and BIC tools do not

work for the nonparametric model, since there is no likelihood function. In Figure 6.3 we

have counted how many times each criterion selects the model that obtains the smallest

root-mse value, for each focus parameter μk as defined in (6.1). Figure 6.4 contains the

corresponding attained root-mse values. Note that for lag 1 the theoretical root-mse for

the autoregressive models are, for all practical purposes, equal to that obtained by the

nonparametric model. In all other cases, the nonparametric model has a root-mse larger

than the optimal model.

In this illustration, the FIC behaves more or less as intended, by selecting (on average)

the models that produces the smallest risk. The amount of evidence is by no means

conclusive, but it indicates that the FIC machinery has a real potential.

Figure 6.4. The relative root-mean-squared (computed in the same simulations) for

the models selected by FIC, AIC and BIC, and by always using the non-

parametric model.

7. Concluding remarks

Here we offer a list of conclucing comments, some pointing to further relevant research.

7.1. Model averaging. The FIC scores may also be used to combine the most promising

estimators into a model averaged estimator, say μ̂∗ =
∑

j c(Mj)μ̂j, with c(Mj) given higher

values for models Mj with higher FIC scores; as discussed in Hjort & Claeskens (2003).
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7.2. The conditional FIC. For time series processes, several interesting and important

focus parameters are naturally related to predictions, are sample size dependent or other-

wise formulated conditional on past observations. The classical example is k-step ahead

predictions. A class of such estimands could take the form

μ(α, γ, y1, . . . , ym) = P{Yn+1 > α and Yn+2 > γ | y1, . . . , ym}
for a suitable choice of α. The dependency on previous data requires a new and ex-

tended modelling framework, which in Hermansen & Hjort (2015, Sections 5 & 6) led to

generalisations and also motivated a conditional focused information criterion (cFIC). In

completing the FIC-framework for selecting among parametric and nonparametric time

series models, such considerations should also be taken into account.

7.3. Linear time series processes. Building onWalker (1964); Hannan (1973); Brillinger

(1975), the main results of Section 3 can be extended to more general types of time se-

ries processes, like the generalised linear processes (cf. Priestley (1981)); also without the

assumption of Gaussian innovation terms.

7.4. Trends and covariates. In the presented work, our focus was on the dependency

structure only. However, the methods and results of our paper may be generalised to

select simultaneously among models with different trends and dependency structures, like

Yt = m(xt, β) + εt, with εt a stationary Gaussian time process. These issues, leading to a

larger repertoire of FIC formulae, will be returned to in later work. Since it is generally

hard to estimate both the trend and dependency structure using a full nonparametric

framework, the two main challenges is to extend the existing work to handle the case

with various parametric candidates for the trend m(xt, β) and both parametric models

and a nonparametric candidate for the dependency, i.e. the spectral distribution (since we

are working under the Gaussian assumption). Alternatively, we may assume that the εt

belongs to an appropriate width family of parametric stationary time series processes, such

as the autoregressive AR, the moving average MA or the mixture ARMA (cf. Brockwell

& Davis (1991)) and instead compare a nonparametric method for estimating the trend

part of the model, perhaps extending this to functions of the type m(t, xi, β), against a

class of parametric alternatives.

7.5. The local large-sample framework. As mentioned in the introduction, Her-

mansen & Hjort (2015) derives FIC for selecting among parametric time series models

using a local asymptotics framework. The parametric candidate models then have spec-

tral densities belonging to a parametric family f(·; θ, γ), with a p-dimensional protected

θ and a q-dimensional open γ. This constitutes a set of 2q potential parametric candidate

models. The full (or wide) model is represented by the spectral density f(·; θ, γ). At the
other end of the spectrum, the narrow model corresponds to fixating γ = γ0, a known
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value, with the resulting f(·; θ) = f(·; θ, γ0). The local misspecification framework then

assumes that the true spectral density takes the form f(·; θ0, γ0 + δ/
√
n), for some un-

known q-dimensional δ describing the distance to the wide model. This framework causes

variances and squared biases to become of the same order of magnitude O(1/n). Those

lead to approximation formulae for the mean squared error and FIC formulae for nested

parametric models, which are different from those obtained in this paper.

The introduction of the ‘asymptotically correct’ nonparametric model of the present

paper allowed us to derive FIC formulae even when sidestepping the above local misspeci-

fication assumption. An alternative approach is to retain the local asymptotics framework

and work with spectral densities of the type fr(ω) = fθ0(ω) + r(ω)/
√
n, where fθ0 is a

standard type of parametric model. Such structures have already been worked with in

Dzhaparidze (1986), making the extension potentially less cumbersome. This will not be

dealt with here, however.
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A Gaussian-based framework for local Bayesian inversion
of geophysical data to rock properties

Martin Jullum1 and Odd Kolbjørnsen2

ABSTRACT

Working in a Bayesian framework, we have derived a pro-
cedure for inverting rock properties based on geophysical
data. The purpose was to arrive at a widely applicable and
general procedure in which few and weak assumptions are
required for application to various inverse problems within
the geophysical industry. Our Bayesian statistical approach
combines sampling-based techniques and Gaussian approxi-
mations to assess local approximations to quantities related to
the posterior distribution of rock properties. These approxi-
mated quantities define the Bayesian inversion. A conceptual
advantage of our approach is that there are few restrictions on
the initial model, allowing realistic statistical models to be
approximated directly. The methodology is easily parallelized
and offers a range of procedures, which gives a trade-off be-
tween inversion speed and accuracy. We have tested the ap-
proach in a monitoring setting using seismic amplitudes by
evaluating a synthetic case and real data from the Sleipner
CO2 injection project. For the synthetic case, the inversion
results correspond well with the rock properties used to gen-
erate the data and the posterior distribution derived using an
MCMC approach. We also found improved accuracy com-
pared with a frequently used Gaussian inversion approach. In
the real data case, we clearly identified high-saturation layers
present in previous qualitative interpretations.

INTRODUCTION

In the geophysical industry, there is a great need for solutions to
various types of inverse problems. Most of these problems are how-
ever ill posed and seldom have a unique or well-defined solution.
The final objective of many of the inverse problems is to predict

rock properties such as porosity, lithology, saturation, permeability
etc. from geophysical data such as seismic amplitudes (Mukerji et al.,
2001; Doyen, 2007; Gunning and Glinsky, 2007; Avseth et al., 2010).
The Bayesian approach (Tarantola and Valette, 1982) is a popular
framework for solving inverse problems (Bosch et al., 2010). The
main advantage of the Bayesian approach is the possibility to incor-
porate additional knowledge of the problem and assess the uncer-
tainty after accounting for the data. In such a setting, computation
or approximation of a posterior distribution, here corresponding to
the probability distribution of the rock properties conditioned on the
observed geophysical data, determines the inversion.
Unfortunately, full analytical evaluation of the posterior distribu-

tion is only possible for highly restricted classes of distributions.
For instance, Buland and Omre (2003) perform inversion from
seismic amplitude versus offset (AVO) data to elastic parameters
(but not further to actual rock properties) by assuming that the
two model components are jointly Gaussian, resulting in an analytic
closed-formGaussian posterior distribution for the elastic parameters.
Because realistic models seldom fit such a formulation, the method-
ology may merely be viewed as an approximation, possibly far from
the actual posterior distribution (Rimstad and Omre, 2014a). Rimstad
and Omre (2014a, 2014b) relax the Gaussian model assumptions, but
to evaluate the posterior distribution, they need to use Markov Chain
Monte Carlo (MCMC; Robert and Casella, 2005) sampling proce-
dures, which may be very time consuming in high dimensions. The
Gaussian mixture approach of Grana and Della Rossa (2010) also
relaxes the Gaussian assumption, and even goes all the way to rock
properties, but it requires modeling approximations elsewhere and
thereby also operates approximately.
Several authors have restricted their attention to discrete facies as

the rock property of interest. Larsen et al. (2006) introduce Markov
property dependencies to describe a vertical profile based on seis-
mic AVO data. Buland et al. (2008), Ulvmoen and Omre (2010),
and others follow along similar lines. These approaches include an
initial step in which a distribution claimed to be multimodal is ap-
proximated by a unimodal Gaussian distribution based on Buland
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and Omre (2003). Even if the multimodality is subsequently cor-
rected for, and the results appear reasonable, the conflicting mode
assumptions have unclear implications. Further, even if the used
discrete Markov property is suitable in some situations, it generally
restricts the dependence structure. Finally, because these method-
ologies rely on the discrete nature of the facies, the approaches
cannot be directly transferred to situations with continuously distri-
buted rock properties.
Although there is a wide range of techniques in the statistical

literature for approximating Bayesian posterior distributions (for
a review, see e.g., Green et al., 2015), there are few examples of
such techniques being directly applied to geophysical types of in-
verse problems. This is possibly caused by a gap between the com-
putational efficiency of such techniques when being applied to large
geophysical types of inverse problems, and what is acceptable for
the industry (Mosegaard and Tarantola, 2002). Even though they are
time consuming, attempts have been made to solve such inverse
problems based on the MCMC approach (Mosegaard and Tarantola,
1995; Malinverno, 2002; Hammer et al., 2012).
It is evident that there is a need for a computationally feasible

large-scale inversion methodology which can deal with more
general model formulations than the existing ones. Short of computa-
tional advances, attempts to make statistical methods computationally
tractable involve some kind of simplification, approximation, or intel-
ligent elimination of redundancy. For these types of inverse problems,
it often suffices to obtain inversion results for each individual cell in a
grid of the region of interest. In a Bayesian framework, such local
inversion corresponds to computing or approximating the marginal
posterior distribution in each cell and using predictors and uncertainty
measures based on those distributions as the inversion result.
Our methodology uses a local inversion approach that simplifies

the problem. Inversion of a larger region then reduces to a large
number of local inversions, which we handle individually. The ef-
ficiency of the local inversion approach lies partly in including only
the variables and data most relevant for the current local inversion.
This reduces the dimensionality of the problem to a magnitude that
we can handle efficiently, while still taking the most relevant spatial
dependence into account. The local inversion is carried out by relying
on a certain Gaussian likelihood approximation and a weighted
Monte Carlo sampling routine. Handling the local inversions indi-
vidually allows us to parallelize the full-inversion problem, leading
to heavy algorithmic speed-up compared with MCMC-type proce-
dures. There are also few modeling limitations underlying our
approach. In particular, our approach can handle any type of rock-
physics model and any type of prior distribution for the rock proper-
ties. It is not limited by specific restrictions on the spatial structure
typically present in other approaches (such as e.g., certain Markov-
type dependence structures), and it can in principle be used with any
rock property: continuous, discrete, or a combination of the two.

METHODOLOGY

The full inverse problem is usually decomposed into two
inversions: geophysical inversion (Buland and Omre, 2003) and

rock-physics inversion (Avseth et al., 2010). The joint global prob-
lem may be described by the simple hierarchical formulation shown
in Figure 1. Here, r denotes a rock property, such as lithology,
porosity, or saturation that we are interested in. The geophysical
properties of m typically consist of density and two elastic param-
eters (either P- and S-wave velocities, or acoustic and shear imped-
ance) or any triplets of these. Finally, d denotes the geophysical data
often consisting of seismic AVO data at a few different offsets. The
geophysical data may however also represent data sources such as
root-mean-square (rms) velocity (Buland et al., 2011) or gravimet-
rics data (Hauge and Kolbjørnsen, 2015). Hence, the left arrow of
Figure 1 represents the rock-physical relation, whereas the right ar-
row represents the geophysical relation. That is, all impact from the
rock properties to the geophysical data goes through the geophysi-
cal properties.
We shall need a fair amount of notation when building our in-

version framework. We shall assume that the global quantities in
Figure 1 all operate on the same grid of the region of interest. (They
may in principle work on different grids of the region, but we ex-
clude that case for presentational simplicity.) Uppercase letters in
calligraphic font (A;B; C;D) are used to denote subsets of cells
of the gridded region. Avariable written in boldface roman font with
a calligraphic subscript (e.g., dD) refers to the subvector corre-
sponding to the subset of that subscript. A boldface roman variable
with no calligraphic subscript (e.g., d) contains the individual var-
iable(s) of the complete gridded region under consideration. For
other quantities, we will use fairly standard statistical notation: We
use a superscript roman T for the matrix transpose, pð·Þ as a generic
notation for probability distributions, ∼ for “distributed as,” μ for
the mean (vector), and Σ for the covariance matrix. The Gaussian
distribution of a variable x (with mean μ and covariance matrix Σ) is
denoted by Nxðμ;ΣÞ. Noncalligraphic subscripts will be used to
distinguish variables of similar types. A superscript asterisk will be
specifically used to denote approximate quantities used in the frame-
work, like e.g., p�ðxÞ and μ�x. The most important quantities are also
given in Table 1.

The general framework

The overall goal of the inversion is to predict the rock properties r
from the obtained geophysical data d over a gridded interest region
A. We will handle this by focusing on one grid cell at a time, and
hence carry out predictions and uncertainty measures on grid cell
level. Because the methodology will be the same for each cell in
A, we will present the methodology by considering a single cell
A — the extension to A amounts to repeating the procedure for
each A ∈ A. Working in the Bayesian framework, carrying out
the inversion to rock properties in cell A amounts to evaluating ap-
proximated quantities or measures related to the marginal posterior
distribution pðrAjdÞ of the target variable rA. Any preferred measure
of central tendency of this posterior distribution may be used as a
predictor for the true rock property in cell A. Common selections
are the mean, mode, and median. The uncertainty may be quantified
by a measure of spread, such as the standard deviation, or through one
or more suitably chosen credibility intervals. Local probability state-
ments, such as the probability that the porosity inA is more than 0.15,
may also be computed. Our method may also produce an approxi-
mation to the complete marginal posterior distribution, should that
be of interest.Figure 1. Forward model hierarchy.

2 Jullum and Kolbjørnsen



By using Bayes’

pðrAjdÞ ∝ pðdjrAÞpðrAÞ: (1)

Here, pðrAÞ is the prior probability distribution for the target
variable, whereas pðdjrAÞ is the likelihood of the geophysical data,
conditioned only on the target variable. Hence, in pðdjrAÞ, the geo-
physical propertiesm are marginalized out along with the rock prop-
erties in other cells than A. In terms of Figure 1, this model setup
corresponds to a direct arrow from rA to d, reducing the global two
stage problem to a local one stage problem. This is beneficial because
two-step approaches do not fully account for the dependence in
Bayesian models (Bosch et al., 2010). It is not generally possible to
give a closed-form expression for pðdjrAÞ based solely on the global
geophysical and rock-physical likelihoods pðdjmÞ and pðmjrÞ.
Essentially, one would have to go through the following rewrite
of equation 1:

pðrAjdÞ ∝
ZZ

pðdjmÞpðmjrÞpðrA\AjrAÞ dm drA\ApðrAÞ

¼
ZZ

pðdjmÞpðmjrÞpðrÞ dm drA\A; (2)

where A\A denotes all cells in A except A. The dimensions of these
integrals depend on the number of cells in A and whether the geo-
physical and rock-physical models possess independence between
certain cells. For realistic problems, these are usually at least 100-di-
mensional, and in the densest cases, they might be of dimension 106

or more. Thus, we cannot tackle this problem directly via equations 1
and 2.
Instead of attempting to work with the global geophysical and

rock-physical likelihoods, our approach aims at modeling only
the part that is most relevant for the target variable rA. Let us thus
introduce the local subsets B; C, and D, which are sets of region
cells reflecting the modeled part of respectively the rock properties
r, the geophysical properties m, and the geophysical data d in the
local inversion for cellA. Their corresponding variable sets rB,mC,
and dD are named, respectively, the neighborhood variable, influ-
ence variable, and local data. To set the idea of the local subsets
straight, the bulleted list below and illustration in Figure 2 provide
basic guidelines for how these may be specified in an AVO data
setting with vertical dependence:

• All local subset variables should be centered in cell A.
• D should include the cells for which the data d are influenced

by mA, that is, half a wavelet length above and below A.
• C should include the cells for which the geophysical proper-

ties m influence the local data dD, i.e., one wavelet length
above and below A.

• B should have size at least in order of the tuning thickness.
This ensures that rB is the main source of variability for the
data interfering with the contribution from A.

Note, however, that our approach is not restricted to vertically
defined local subsets; that is, lateral dependence may in principle
also be modeled by our approach. The task of selecting the local
subsets will be discussed in more depth later on.

Referring to Bayes’ formula as in equation 1, our approximation
approach is based on the relation

pðrAjdDÞ ¼
Z

pðrBjdDÞ drB\A ∝
Z

pðdDjrBÞpðrBÞ drB\A;
(3)

where B \A denotes all cells in B except A. Replacing pðdDjrBÞ
(henceforth referred to as the local likelihood) by a Gaussian
approximation yields the following integral form approximation:

pðrAjdÞ ≈ p�ðrAjdDÞ ∝
Z

p�ðdDjrBÞpðrBÞ drB\A; (4)

where the Gaussian approximation is given by

p�ðdDjrBÞ ¼ NdD

�
μ�dDjrBðrBÞ;Σ�

dDjrBðrBÞ
�
: (5)

Table 1. Important quantities.

Symbol Description

d Vector of geophysical data for all cells in the gridded
interest region

m Vector of geophysical properties for all cells in the gridded
interest region

r Vector of the rock property of interest for all cells in the
gridded interest region

A Gridded interest region

A Cell in A under consideration

B Subset of region cells for which the rock properties are
modeled in the local inversion for rA

C Subset of region cells for which the geophysical properties
are modeled in the local inversion for rA

D Subset of region cells for which the geophysical data are
included in the local inversion for rA

rA Target variable

rB Neighborhood variable

mC Influence variable

dD Local data

G Matrix representing the impact m has on the mean of d

Σε Covariance matrix of the geophysical likelihood

Figure 2. Illustration of sensible selection of the local subsets B; C,
and D for seismic AVO data with vertical dependence.
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As will become clear in the following subsections, the Gaussian
distribution in equation 5 will be established by merging a Gaussian
approximation to the local rock-physical likelihood pðmCjrBÞ with
a Gaussian approximation to the local geophysical likelihood
pðdDjmCÞ. Based on the integral form in equation 4, we define a
weighted Monte Carlo routine enabling us to approximate in prin-
ciple any quantities of interest related to pðrAjdÞ (such as the mean,
variance, probability of a certain event, or the complete density) by
properly aggregating weighted samples from the prior of the target
variable. The next three subsections present the details of the ap-
proximations for the local rock-physical and geophysical likeli-
hoods, in addition to the proposed weighted Monte Carlo routine.

Local rock-physical likelihood

There is in general no simple description of the spatial distribution
of the rock-physical likelihood pðmjrÞ. To obtain a Gaussian approxi-
mation to the required local rock-physical likelihood pðmCjrBÞ, we
therefore take a flexible sampling-based approach. This approach only
requires that we are able to sample “pairs” ðmC; rBÞ from their joint
distribution. The objective is to use these samples to fit the best pos-
sible mean and covariance matrix functions in a Gaussian approxima-
tion of the form

p�ðmCjrBÞ ¼ NmC
ðμ�mC jrBðrBÞ;Σ�

mC jrBðrBÞÞ: (6)

Note that a Gaussian approximation to pðmCjrBÞ is less restric-
tive than the Gaussian approximation to the unconditional distribu-
tion of the geophysical properties pðmÞ used in Buland and Omre
(2003), Larsen et al. (2006), and related work. In principle, the
mean function μ�mC jrBðrBÞ and covariance function Σ�

mC jrBðrBÞ could
behave in completely unrestricted ways. In order not to make the
fitting procedure too complicated, we do, however, suggest to di-
vide the sampled pairs into K different nonoverlapping classes ac-
cording to some specified criterion on rB. Within each such class k,
separate mean functions μ�mC jrB;kðrBÞ are fitted by a regression pro-

cedure, and the resulting residuals ε 0 ¼ mC − μ�mC jrB ;kðrBÞ are used
to estimate a fixed covariance matrix Σ�

mC jrB;k for that class. Using

this procedure, the mean function has an unrestricted dependence on
the neighborhood variable rB, whereas the covariance matrix depends
categorically on the class k of rB. Hence, the criterion that divides the
samples into different classes should be chosen such that the depend-
ence structure within the influence variable mC is fairly stable.
Although a simple linear regression (least squares) method may be

used to fit μ�mC jrB ;kðrBÞ in the above procedure, we suggest using a
technique that allows for increased fidelity in more complex situa-
tions. Examples are multivariate adaptive regression splines (MARS;
Friedman, 1991), projection pursuit regression (Friedman and Stuet-
zle, 1981), neural networks (Cheng and Titterington, 1994), and gen-
eralized additive models (Hastie and Tibshirani, 1986). Flexibility is
essential here because it allows the approximated dependence on rB
to match that of the true model more closely. Also, the larger the
sample size the more stable the approximations become.
One strength of the sampling-based approach is that the distribu-

tion fit may be checked by standard multivariate normality tests
(Henze, 2002). If tests deem the Gaussian model acceptable, the ap-
proximations are guaranteed to be good. If not, one may attempt to
correct for the non-Gaussianity by using a more flexible regression

procedure, increase the number of classes, redefine the local subsets,
or reduce the influence of the outliers. The last option may for in-
stance be done by using a range spanning covariance estimation rou-
tine to estimate Σ�

mC jrB ;k as opposed to using the standard sample
covariance. Such a routine stretches the tails of the Gaussian model
by using an estimate of the covariance that spans broadly enough for
no sampled pairs ðmC; rBÞ to be very unlikely under the fitted model.
This method weakens the impact of deviations from the Gaussian
model’s dependence structure, and it reduces to the standard sample
covariance if the fit is already good. The suggested routine is outlined
in Appendix A.

Local geophysical likelihood

The global geophysical likelihood model typically takes the form
pðdjmÞ ¼ NdðGm;ΣεÞ, where G is a matrix of the appropriate di-
mension representing the linear dependence of the geophysical data
d on the geophysical properties m. That is

d ¼ Gmþ ε; (7)

with ε some error term with distribution Nð0;ΣεÞ. We seek an
approximation for the local geophysical likelihood pðdDjmCÞ, where

dD ≈ ~GmC þ ~ε; (8)

with ~G corresponding to G above, and ~ε ∼ Nð0;Σ~εÞ. However,
extracting the local part of equation 7 gives dD ¼ GDmþ εD, where
GD is the submatrix of G containing only the rows corresponding to
D. As illustrated upon introduction of the local subsets, C is chosen as
the region whose geophysical properties influence the local data (the
most). Hence, it is reasonable to approximate GDm by GD;CmC,
where GD;C contains the columns of GD corresponding to the cells
in C. The sought-after approximation is consequently obtained by
letting ~G ¼ GD;C and Σ~ε ¼ ΣεD in relation 8.
By a result in Appendix B, the established local rock-physical

and geophysical likelihood approximations give a fully specified
local likelihood approximation p�ðdDjrBÞ as in equation 5 with

μ�dDjrBðrBÞ ¼ GD;Cμ�mC jrB;kðrBÞ;
Σ�
dDjrBðrBÞ ¼ GD;CΣ�

mC jrB;kG
T
D;C þ ΣεD ;

(9)

for each rB in class k.

Weighted Monte Carlo routine

The final part of the framework concerns the weighted Monte
Carlo routine, which approximates inversion quantities of interest.
The routine relies on the integral in relation 4 with p�ðdDjrBÞ as
specified by equations 5 and 9. The routine goes as follows:

1) Sample a large number L of rB-variables from its prior pðrBÞ.
2) For each sample rðlÞB , compute the mean μ�dD jrBðr

ðlÞ
B Þ and covari-

ance matrix Σ�
dD jrBðr

ðlÞ
B Þ of the local likelihood approximation

from the formulae in equation 9.
3) For each sample rðlÞB , use the computed μ�dD jrBðr

ðlÞ
B Þ and

Σ�
dDjrBðr

ðlÞ
B Þ to evaluate the approximate local likelihood

p�ðdDjrB ¼ rðlÞB Þ.
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4) For each sample rðlÞB , extract rðlÞA and define unnormalized and
normalized weights by respectively

vðlÞ ¼p�ðdDjrB ¼ rðlÞB Þ and wðlÞ ¼ vðlÞP
L
j¼1v

ðjÞ : (10)

Each pair ðrðlÞA ; wðlÞÞ; l ¼ 1; : : : ; L may then be used to approxi-
mate in principle any quantity related to pðrAjdÞ. Some exam-
ples are:

1) μ�ðrAjdÞ ¼
P

L
l¼1 w

ðlÞrðlÞA .

2) p�ðrA ∈ SjdÞ ¼ P
L
l¼1 w

ðlÞ1frðlÞA ∈ Sg for some set S ∈ ð−∞;∞Þ,
where 1f·g is the indicator function.

3) For rA with discrete prior distribution pðrAÞ: p�ðrAjdÞ ¼P
L
l¼1 w

ðlÞ1frðlÞA ¼ rAg.
4) For rA with continuous prior distribution pðrAÞ: p�ðrAjdÞ ¼P

L
l¼1 w

ðlÞKhðrA − rðlÞA Þ, where Kh is a scaled kernel density
function with bandwidth h (see e.g., Silverman, 1986).

In some cases, it is fruitful to sample from the prior conditioned
on some criterion, rather than directly. This is especially the case
when the interesting parts of the sample space are a priori unlikely
or naturally separated in e.g., a discrete and continuous part. Ap-
pendix C gives more details on this subject.

Full-region inversion

Two requirements must be met to use our approximation frame-
work. First, relation 8 must hold with a Gaussian error term ~ε, at
least approximately. Second, it must be possible to sample from
pðmC; rBÞ. Sampling from pðrBÞ is ensured by the latter requirement.

A major advantage of this framework first becomes apparent when
considering inversion of a larger region. As mentioned earlier, inver-
sion over a gridded region A is carried out by applying the presented
technique to each grid cell A ∈ A. This allows for parallelization
which under the following additional stationarity assumptions, results
in a computationally efficient inversion procedure:

• B ¼ BðAÞ; C ¼ CðAÞ;D ¼ DðAÞ are all specified with rela-
tion to A only.

• pðdDðAÞ;mCðAÞ; rBðAÞÞ is stationary with respect to A.

These assumptions ensure that the local subsets followA when it
shifts from one cell to another and that the joint distribution of the
local subsets is independent of this shift. The mean and covariance
matrix functions of the local likelihood approximation in equation 9
thus hold for all A ∈ A and need to be computed only once. The
only part of the procedure that changes from one position to another
is the local geophysical data dD. Hence, global inversion of A may
be carried out by simply repeating steps 3) and 4) in the above
Monte Carlo routine for each cell A ∈ A. The stationarity assump-
tions are not strictly required for our method to work out but are
introduced for computational speed-up. There is speed-up also if
the assumptions hold only for certain parts of A.

Selecting local subsets

Selecting appropriate local subsets B; C, and D is essential in this
approximation framework. The dimension of these is an issue of
approximation accuracy versus computation speed, but it is not

necessarily so that choosing them to be larger independently of each
other will lead to a better approximation. A sensible and efficient
approximation framework thus requires careful selection of these
subsets.
By narrowing d to the local data dD, we limit the information

used for the local likelihood evaluation. Using too little data gives
a considerable loss of information, but using too much data leads to
infeasible computation. Also, including data with minor relation to
the target variable rA does not bring anything new. Selecting D
to be the region directly influenced by the geophysical properties
in A gives a reasonable trade off. For other geophysical models,
this region is not as easily determined as for seismic amplitude data.
That situation is discussed in Appendix D.
As mentioned earlier, C should be the region for which the geo-

physical properties influence the local data dD. Expanding C beyond
this would not improve the fit, but only make the task of fitting
p�ðmCjrBÞ more complex.
A common assumption within the geosciences is that all that

could be learned about local geophysical properties from rock prop-
erties are found in the local variables; that is, pðmX jrÞ ¼ pðmX jrX Þ
for any set of region cells X . Based on this relation, it is clear that it
would be optimal to set B equal to whatever C is set to. Because the
dimension of B is exactly the dimension of the integral that the
weighted Monte Carlo routine relies on, practicalities usually make
such a choice impossible. The reason is that to maintain the accuracy
of the Monte Carlo routine when the dimension of the integrand
increases, a larger number of prior samples, and hence likelihood
evaluations, is required. However, assuming that the Monte Carlo
accuracy is maintained (at a higher computational cost), it is likely
that expanding B would lead to a better approximation of the true
posterior and, consequently, more accurate predictions of the rock
properties and their uncertainties. If B is too small, important features
of the local data dD, which are “transferred” to the influence variable
mC, may be caused by characteristics of rock properties outsideB and
thereby not be associated with appropriate values of the target var-
iable rA.
The local subsets may also be selected by comparing the proper-

ties of samples from the local likelihood approximation p�ðdDjrBÞ
obtained for different choices of B; C andD to those of the true local
likelihood pðdDjrBÞ. Alternatively, confidence in certain local sub-
sets may be built based on application to a synthetic case in which
the resulting approximated posterior distribution can be compared
with the true rock properties. We rely on this latter approach for
selection of B in the upcoming data illustrations.

SYNTHETIC DATA TEST

In the next section, we will consider a 4D survey from the Sleip-
ner CO2 injection project as a real data example. We shall use that
case as a motivation in this synthetic example. The synthetic data
shall reflect a region similar to the Utsira Formation in the Sleipner
field offshore Norway, where CO2 has been injected for storage and
seismic base and monitor surveys have been conducted. The CO2 is
typically trapped underneath thin layers of shale within the forma-
tion or under the formation top. The main objective is to “map” the
CO2 based on the saturation in the region. Hence, we define the rock
property of interest r as the CO2 saturation at the time point of one
of the monitor surveys (herein for simplicity referred to as the sat-
uration), assuming no injection prior to the base survey. The geo-
physical properties m are defined as the change in the logarithm of
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the P- and S-wave velocity and density from base to monitor time.
Finally, d denotes the change in properly aligned seismic angle
gathers from base to monitor time.
In this synthetic example, we shall be content working with mod-

els and data specified on a gridded 2D region A of size 3500 m ×
280 ms (length × two-way traveltime [TWT]), where each of the
19,600 grid cells have size 25 m × 2 ms. We shall perform inver-
sion of synthetic geophysical data to saturation for the complete
region A. The synthetic case is constructed by specifying global
stochastic rock-physics and geophysical models in this region. Note
in particular that the stochastic rock-physics model involves also
other rock properties than the saturation r.
Let us first consider the rock-physics model. There are few re-

liable measurements of velocity and density from the injection well
(Rabben and Ursin, 2011). The problems with the logging are prob-
ably due to issues with the very loose sand in Utsira. The P-wave
velocity in brine-filled sand is slightly more than 2000 m∕s, and

the rock matrix in this region corresponds to loose sand. The
rock-physics model we use for the Utsira sand is consistent with
these data. In our model, we use a Reuss mix of the mineral point
and a high-porosity member constructed usingWalton’s model with
45% porosity (see e.g., Mavko et al., 2009). The parameters and
corresponding uncertainty model for this rock-physics model are
given in Table 2, which also provides the temperature and pressures
used to derive the fluid properties. The rock-physics model is sim-
ilar to the model used by Arts et al. (2004), but a notable difference
is that we use the velocity and density for brine, which are compat-
ible with the most recent pressure and temperature measurements in
the formation (Batzle and Wang, 1992; Alnes et al., 2011). When
matching the observed velocity in Utsira, this gives softer sand than
is used in Arts et al. (2004). The effect of the saturation on geo-
physical properties is computed using fluid substitution, that is,
Gassmann’s equations (Mavko et al., 2009) where a homogeneous
fluid mix (Reuss) is assumed. Due to the nature of CO2 and the soft
rock at the Sleipner injection site, saturation is the main cause of
variability for the change in geophysical properties from base to
monitor time. This is illustrated in Figure 3, which displays samples
of brine- and CO2-saturated rocks from the rock-physics model,
overlaid on a rock-physics template.
The geophysical likelihood model is of the form described by

equation 7, i.e., Gaussian with linear mean function. The linear
multiplicand here is G ¼ WAD; W is a block diagonal matrix rep-
resenting the smoothing with a 25 Hz Ricker wavelet; A is the ma-
trix of weak-contrast coefficients for each of the offset angles 5°
(near), 20° (mid), and 35° (far) as defined by Aki and Richards
(1980); and D is a differential matrix producing contrasts of the
geophysical properties. The covariance matrix Σε for the error term
is block diagonal with independence between the different offsets,
and the standard deviations are 0.04 for near, 0.05 for mid, and 0.06
for far offset.
The synthetic saturation for our region of interestA is constructed

to mimic the high-saturation layers in the Utsira Formation. It con-
tains multiple layers with a flat top and variable thickness. In par-
ticular, 5% of the region cells possess saturation greater than 0.6.
The synthetic saturation and noisy geophysical data sampled from
the rock model are displayed in Figure 4. Note in particular that the
peak amplitude of the seismic data does not follow a flat top.
Let us now turn to the inversion, in which we will limit our ap-

proximations to include vertical dependence. We shall define a sto-
chastic prior model for the saturation, and otherwise we use vertical
analogs of the rock-physics and geophysical models described above
as the basis for our approximations. The prior model for saturation is
defined as a transformation of a Gaussian copula (Joe, 1997), which
models the effect that adjacent cells are more correlated than distant
ones. The marginal distribution in each cell has a point mass at zero
and a continuous distribution from 0 to 1. In each cell, the prior prob-
ability for the saturation being zero is 99%, whereas the saturation is
distributed as Beta(6, 1.5), as shown in Figure 5, when it is strictly
positive (because the distribution of saturation has a discrete and a
positive part, this example illustrates the applicability of our approach
to both these types of rock properties). Consult Appendix B for de-
tails on the beta distribution.
The Gaussian copula has a stationary exponential covariance

function with range parameter R ¼ 50 ms in the parametrization
CðhÞ ¼ expð−3jhj∕RÞ, where h is the vertical “distance” (in ms)
between two locations.

Table 2. Rock-physics model parameters. The mineral param-
eters have correlation 0.99 between properties. Details on the
two and four parameter beta distributions are given in
Appendix B.

Property Distribution

Mineral bulk modulus (GPa) N(35.4, 3.2)

Mineral shear modulus (GPa) N(27.3, 7.4)

Mineral density (g∕ccm) N(2.647, 0.008)

Brine bulk modulus (GPa) Fixed = 2.538

Brine density (g∕ccm) Fixed = 1.027

CO2 bulk modulus (GPa) Fixed = 0.065

CO2 density (g∕ccm) Fixed = 0.686

Coordination number Fixed = 7.3

Friction factor Beta(5.0, 0.8)

Porosity Beta4(2.0, 2.0, 0.27, 0.42)

Pore pressure (MPa) Fixed = 10

Effective pressure (MPa) Fixed = 10

Temperature (°C) Fixed = 36

Figure 3. Rock-physics template: The boundaries of the template
correspond to porosity of 40% and 30% and, CO2 saturation of
0 and 1. The center lines of the template correspond to porosity and
CO2 saturation of, respectively, 35% and 0.5. For saturation, that
line is partly hidden close to the lower boundary of the template.
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Because we limit our approximations to only include vertical
dependence, the local subsets B; C, and D only include variables
within the same vertical profile as A. They are also all centered
inA. Specifically, we let D include 20 ms above and belowA, hav-
ing dimension 21, whereas C includes 44 ms above and below A,
having dimension 45. As we shall see shortly, B is selected on a
trail and error basis through comparison with the true synthetic
saturation.
In our approximations, we estimate p�ðmCjrBÞ by splitting the

sampled pairs ðmC; rBÞ into K ¼ 4 classes depending on whether
the saturation in the two boundaries of B (i.e., the shallowest and
deepest cells in B) are zero or strictly positive. The mean functions
μ�mC jrB ;kðrBÞ for each class k are estimated by a MARS procedure,
where generalized cross validation is used to specify the tuning
parameters in the regression. The covariance matrices Σ�

mC jrB ;k; k ¼
1; : : : ; 4 are estimated by the range spanning covariance estimation
routine in Appendix A.
Between 45,000 and 100,000 samples are used for each of the

K ¼ 4 classes to fit the approximate local rock-physical likelihood
p�ðmCjrBÞ. Because nonzero saturation occurs in only 1 out of 100
cells by direct sampling, it is beneficial to oversample positive rB.
This will give more robust approximations for the whole sample
space of the target variable rA. Hence, two sets of rB samples
(one conditioned on rA ¼ 0 and one conditioned on rA > 0) are
used in the weighted Monte Carlo routine (see Appendix C for fur-
ther details). This sampling procedure, with each of the two sets
being of size 105, will be used throughout the paper.
To fully specify the inversion, we must choose the size of B for

this synthetic case. (The chosen size will also be passed forward to
the upcoming real case.) We do this by pointwise comparing pre-
dictors derived from the local inversions with the true synthetic sat-
uration. For that comparison, and for the remainder of this paper, we
will use the approximated marginal posterior mean saturation in
each cell as a predictor for the true unknown saturation. Increasing
the dimension of B should in theory (on average) result in a closer
match between the truth and the approximation, represented by the
bias. At the same time, it increases the variability between the per-
formances of different sets of prior samples, represented by the
(Monte Carlo) variance. We define the optimal B as the one min-
imizing the mean squared error (MSE), which decomposes nicely
into squared bias plus variance. Empirical versions of squared bias,
variance, and MSE averaged over the cells in the full 2D region are
shown in Figure 6 for varying size of B and constant sample size —
when using the posterior mean as predictor. Note that the MSE is
computed on a cell-by-cell basis; hence, it penalizes any minor mis-
alignment in the predicted saturation severely. In terms of the bias
versus variance trade-off (i.e., MSE minimization), we deem B of
dimension 17 the optimal for the current sampling regime. That is,
the optimal B includes 16 ms above and below A. As seen from the
figure, the squared bias is fairly flat to the right of dimðBÞ ¼ 17.
This indicates that increasing the sample size further would not im-
prove the fit considerably. The slight increase in bias for the largest
dimensions is an indirect effect of the relatively small sample size.
Figure 7 shows the marginal posterior means for the chosen B

and explained sampling regime, along with its difference from the
synthetic truth. As seen from the figure, the posterior mean matches
the true saturation well over the complete 2D region, at thicker and
thinner layers of high saturation. Note the good positioning of the
top and base of high-saturation layers also when the layer thickness

is below the tuning thickness. As expected, the positioning of thin
layers far below the tuning thickness results in some misalignment
of the high-saturation layers. They are, however, still detected, and
vertical profile averages are generally well preserved. Compared
with using the prior directly without support of the data (MSE =
0.038), our framework reduces the empirical MSE almost an order
of magnitude (MSE = 0.0050). Also, the prior average saturation in

Figure 4. (a-c) Synthetic seismic difference data (near, mid, and far)
relevant for the 2D region of interest. (d) Generated synthetic sat-
uration at monitor time r for the complete synthetic 2D region.

Figure 5. Marginal prior distribution of positive saturation: A beta
distribution with shape parameters a ¼ 6 and b ¼ 1.5, having mean
0.8 and variance approximately 0.02.
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the region is 0.0080, whereas the posterior regionwise average is
0.0455. These should be compared with the regionwise average
of the true synthetic saturation, which is 0.0449. Thus, even if the
approach operates locally, it still gives information about bulk prop-
erties. These results are not only an outcome of our framework and
procedure, but they also depend on the statistical model and grid
being used. Because the same grid is used to generate the synthetic
case and perform inversion, potential bias caused by grid cells being
misaligned with high-saturation layers are not present in this syn-
thetic case. Also, the selection bias is not accounted for when the
same data are used to tune a parameter and present performance
results. However, the flat behavior of the MSE curve around the
minimum point in Figure 6 indicates that such selection bias is
insignificant here.
To properly evaluate the accuracy of our approximationmethod, the

approximated marginal posterior distributions should be compared
with the true posterior distribution. Because “exact” methods for

computing the posterior distribution are computationally extremely
costly, this is not feasible for the full 2D region. To accompany the
above evaluation and comparison with the actual synthetic satura-
tion, we do however evaluate the true posterior distribution in a sin-
gle vertical profile (positioned at 1625 m) for comparison with our
procedure. The true posterior for the vertical trace is obtained by
running a blockwise Metropolis Hastings MCMC scheme (Bolstad
[2009], chapter 6.3) with an independence sampler corresponding
to the conditional prior distribution. This “brute force”MCMC pro-
cedure required several days of CPU running time to provide reli-
able results — whereas our approach produced approximate results
within seconds. For this vertical profile, Figure 8 shows pointwise
80% credibility intervals (CI) (the range between P10 and P90),
posterior means and medians for the true posterior and our local ap-
proximation procedure with a few different sizes of B. Also plotted
are the seismic difference data and true synthetic saturation. The
figure illustrates the typical behavior for our method when varying
the size of B, while the sample size is kept constant. When B is too
small, the approximated posteriors are simplified too much. Increas-
ing the size of B increases the level of detail, but a too-large B gen-
erates unwanted noise with thin wrongly predicted high-saturation
layers, and gives unstable results due to the relatively small sample
size. For the MSE-optimized procedure, where dimðBÞ ¼ 17, the
posterior mean, median, and the pointwise 80% credibility intervals
match those of the true posterior very well. This indicates that the
approximation method works as intended also on smaller scales.
Finally, we compare predictions from our procedure with the cor-

responding ones based on the frequently used Gaussian inversion
approach of Buland and Omre (2003). Because the approach of Bu-
land and Omre (2003) actually is a geophysical inversion approach,
we temporarily change our focus to prediction of the change in the
logarithm of the density ρ, instead of saturation. Figure 9 shows the
posterior means for the 2D region discussed above for both approxi-
mation methods along with the synthetic true change in log density.
As seen from the figure, the predictions based on our method are
more distinct and clear compared with the vaguer predictions pro-
vided by the Gaussian inversion. The latter perform poorly on thin
layers of reduced density, and also predict areas with a positive
change in log density not present in the synthetic data. Hence, our
method improves substantially upon Buland and Omre (2003) in
terms of prediction accuracy.

REAL DATA CASE

The Sleipner CO2 injection project aims at storing CO2 captured
from the gas production in the Sleipner field offshore Norway by
leading compressed CO2 down to the Utsira Formation through an
injection well. We consider geophysical data from a seismic 4D sur-
vey of this formation and aim at monitoring or mapping the CO2

based on the saturation. We concentrate on the changes from a base
survey in 1994 (before injection) and until a monitor survey in 2006.
Because the saturation is effectively zero everywhere prior to injec-
tion, the changes in saturation correspond to the amount at monitor
time. The geophysical data consist of changes in seismic AVO data
from base to monitor time for three different offsets. The data are
aligned using rms and pushdown data prior to difference computa-
tion. We concentrate on a west–east-directed 2D region intersecting
the injection well. The region spans more than 2900 m × 334 ms,
has a seismic sampling resolution of 25 m × 2 ms, and is positioned
approximately 800 m below sea level.

Figure 6. Empirical estimates of the MSE, squared bias, and Monte
Carlo variance are plotted for different dimensions of B in the syn-
thetic 2D case. These are computed based on five different prior sam-
pling seeds (with totally 2 × 105 samples) for each B centered in A.

Figure 7. (a) Inversion results for the synthetic 2D region shown
through approximated marginal posterior mean saturations in each
cell. (b) The difference between the true synthetic saturation and the
prediction in panel (a).
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The setup of the model to be approximated and its various param-
eters are essentially the same as for the synthetic data test, with the
exception of some parameter specifications for the geophysical like-
lihood pðdjmÞ. In the present case,W consists of 35, 30, and 25 Hz
Ricker wavelets for the near (12.5°), mid (25°), and far offsets (40°),
respectively. The frequency content of the wavelets was set to match
those in the seismic data. For near and far stacks, this was done based
on the common part of the base and monitor surveys in a region di-
rectly above the reservoir. This part has a slightly lower frequency
content than the individual parts, indicating a lower signal-to-noise
ratio at higher frequencies. Processing issues made such detailed
analysis impossible for the far stack. Hence, the far wavelet was
set only from the frequency content in the base survey, accounting
also for a high end frequency loss. The near and mid wavelets are
scaled by a factor two compared with the far offset. This was deter-
mined by analysis of the base data, which gave twice as strong a
signal for the near and mid stack than for the far — most likely
caused by survey and processing effects. The standard deviation of
the error term in the geophysical likelihood model is 0.5 for near and
mid offsets and 0.2 for far offset. This is larger than observed directly
above the reservoir, reflecting that there are larger alignment errors
and stronger amplitude effects in the target region than directly
above.
All other model parameters, local subsets, and other parts of the

inversion setup are the same as for the synthetic case. The optimal
size of the neighborhood variable established for the synthetic case
is used in the sampling. The seismic AVO data relevant for the 2D
region and the resulting marginal posterior means are shown in Fig-
ure 10. The results indicate several wide sections of increased
saturation, which seem to generally match well with the
reflections from the seismic data.
Our approach provides more than the best estimate. Figure 11

shows more detailed inversion results for a vertical profile near the
injection well, together with the seismic amplitudes of that profile.
The figure indicates that there are five main high-saturation layers

with tops approximately at vertical positions 60, 90, 110, 145–160,
and 190 ms. This matches well with a straightforward visual inter-
pretation of the reflections of the seismic amplitudes. The approxi-

mate posterior uncertainty is small at the high-saturation areas
corresponding to the three shallowest and the deepest of these posi-
tions, indicating that the presence of these layers is fairly certain. On
the other hand, the contiguously wide pointwise 80% credibility in-
tervals reaching all the way down to zero for TWTs of 145–180 ms,

Figure 8. Seismic amplitudes, true saturation, and details of the true posterior and our approximation using different sizes of B in a vertical
profile of the synthetic data positioned at 1625 m. The 80% CI shows the pointwise range between the P10 and P90.

Figure 9. Comparison of predictions of changes in log density for
the synthetic 2D region. (a) Predictions (means) based on our method
with local subsets as above, (b) predictions (means) based on the
Gaussian inversion approach (Buland and Omre, 2003), and (c) true
synthetic change in log density.

Gaussian-based local inversion framework 9



indicate larger uncertainty for the levels of saturation. Together with
the disagreement of the mean and median predictors, this suggests
that the presence and depth of one or two high-saturation layers
are highly uncertain within this range.
Boait et al. (2012) study the CO2 migration in the Utsira Forma-

tion after injection using seismic time-lapse data with several mon-
itor surveys, and they present a qualitative interpretation of the
horizons in a 2D region close to the injection point. The qualitative
interpretations match our profile inversion results very well by in-
dicating the same five layers. On a larger scale, the qualitative in-
terpretations also match our inversion results well. Some deviations
are, however, seen in an area slightly east of the injection well, and
in the deepest areas where the signals in our data are weak.

DISCUSSION

Our approach has connections to other general statistics-based
and geophysical-motivated approximation techniques. Similar to
our approach, the integrated nested Laplace approximation (INLA)
method of Rue et al. (2009) approximates parts of the model by
Gaussian distributions, uses their convenient properties, and solves
a lower dimensional final integral by a numerical routine. The
method does not involve local subset parameters, however. Those
Gaussian approximations are also applied to different parts of the
model than ours, and therefore require other types of assumptions
— typically being unrealistic within geoscience applications. Of
the existing geophysics types of techniques, the connection to Bu-
land et al. (2008) is perhaps the closest. Like us, Buland et al. (2008)
perform global inversion by focusing on one cell at a time and rely
on Gaussian approximations. However, they only consider the di-
rect behavior of the rock and geophysical properties in the cell
under current consideration, and not the spatial neighbors, which
is key in our framework. They do not require a Gaussian rock-physi-
cal likelihood (neither globally nor locally), but this also restricts the
applicability of their technique to discrete rock properties, such as
facies or lithology classes.
The overall procedure used in our framework can also be applied

when pðdDjrBÞ is approximated by a non-Gaussian distribution.
There are, however, several benefits of relying on Gaussianity.
Among them are the simple way that conditional distributions are
handled, the computational savings available when preevaluating
larger parts of the Gaussian distribution (under stationarity assump-
tions), and usage of the common assumption that the geophysical
likelihood pðdjmÞ is Gaussian with a linear mean function. The

Figure 10. (a-c) The three different offsets (near, mid, and far) of the
seismic AVO differences between base and monitor time relevant for
the real case 2D region. The near and mid offsets are scaled by a
factor two compared with the far offset. (d) Inversion results shown
through marginal posterior mean saturations for each cell in the
gridded 2D region of the real data case.

Figure 11. Seismic AVO data compared with the approximate mar-
ginal posterior distributions of saturation in a vertical profile close
to the injection well (west–east position 1475 m in the real case 2D
region).
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Gaussian restriction can, however, be relaxed without losing all the
beneficial properties. This is achieved by allowing the local geo-
physical likelihood pðdDjmCÞ and/or the local rock-physical like-
lihood pðmCjrBÞ to rather be approximated by Gaussian mixture
distributions. This increases the flexibility because it allows for
skewness and/or multimodal conditional distributions, which may
improve the accuracy of the procedure if Gaussianity is inappropri-
ate. This extension has the consequence that the local likelihood
approximation p�ðdDjrBÞ also becomes a Gaussian mixture. The
total number of mixture components is the product of the number
of mixture components of the two likelihoods. Because evaluation
of a Gaussian mixture likelihood with q mixture components is
computationally q times more expensive than evaluating a regular
Gaussian likelihood, there should, however, be substantial reasons
for including many extra levels of complexity. Another approach
would be to approximate e.g., pðmCjrBÞ by the selection Gaussian
distribution of Rimstad and Omre (2014b), with the consequence
that p�ðdDjrBÞ also becomes selection Gaussian distributed. How-
ever, further investigations are required for such an extension.
Although the methodology of the framework is motivated by in-

version of single cells, the framework is not strictly restricted to this
situation. All theory and methodology work out even if A refers to
several cells or some weighted sum of these, and also if r corre-
sponds to two or more rock properties. The latter is handled simply
by sampling, say, the porosity and saturation jointly with the geo-
physical properties when approximating the local rock-physics like-
lihood in equation 6, and when sampling rock properties in the
Monte Carlo routine. Further, the local subsets B; C, and D are not
restricted to be contiguous and centered around cell A as illustrated
in Figure 2, even though that is the most natural choice. For some
type of applications (e.g., in seismic tomography with complex ray-
paths), it may be more appropriate to include scattered cells in B.
This would, however, call for a more comprehensive local subset
selection process.
Our approach does not require closed form expressions for the

rock properties’ prior distribution and the rock-physical likelihood,
neither globally nor locally. We only require that samples from the
local distributions are obtainable. This is advantageous in the fairly
common setting where it is hard to specify closed form expressed
models possessing the desired randomness features, but where sam-
pling-based model specifications are easier to put up.
As mentioned, our framework is well suited for parallelization on

multicore computers or graphics processing unit (GPU) accelera-
tors. For our data application, the methodology was straightfor-
wardly implemented in the statistical programming language R
(R Core Team, 2014). The complete inversion procedure for the
synthetic data test was run in parallel on a Windows-based laptop
with an Intel i7 2.6GhZ processor and four cores in less than half an
hour. This included the initial fitting procedure and the weighted
Monte Carlo routine for all the 19,600 individual cells. Because
no attempt was made on boosting this performance, there is still
room for a significant reduction in the computing time. The main
contributions would be a devoted implementation in a precompiled
language and massive parallelization on high-performance cores.
The mixing of the CO2 and brine is a frequently discussed topic.

As an alternative to the homogeneous mix that we use in our ap-
plications, patchy mixtures of fluids have been suggested (Ghaderi
and Landrø, 2009). For the real case, we also tested a simple model
for a patchy fluid mix. The patchy model was obtained by substi-

tuting the Reuss average with a Voigt average when deriving the
properties of the effective pore fluid. For the vertical profile of
Figure 11, this reduced the uncertainty in the high-saturation layers
and introduced the possibility of a low-saturated layer below the top
CO2 layer. Apart from this, the inversion results were very similar.

CONCLUSION

We have presented a general framework for approximate Baye-
sian inversion of geophysical data into rock properties. The meth-
odology approximates quantities directly related to the marginal
posterior distributions of the rock properties defining the Bayesian
inversion. The framework is well suited for parallelization, produc-
ing potentially very fast inversion results. The generality, paralleli-
zation properties, and mild assumptions of the approach should
make it attractive for a broad range of geophysical challenges in
reservoir characterization, monitoring, and exploration.
The issue of the dimensionality in Bayesian inversion was re-

duced by considering local behavior for all model components (rock
properties, geophysical properties, and geophysical data). This was
done by merging a Gaussian approximation to a local rock-physical
likelihood with a Gaussian approximation to a local geophysical
likelihood, and then applying a weighted Monte Carlo routine to
compute the approximate quantities relevant for the inversion.
The synthetic data test showed that our local approach delivers

acceptable errors compared to the much slower MCMC solution;
and at least in this case, it is substantially more precise than a fre-
quently used Gaussian inversion approach. For the real data case,
the inversion results matched well with a previously published
qualitative interpretation of the region.
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APPENDIX A

RANGE SPANNING COVARIANCE MATRIX

Consider estimation of a range spanning covariance matrix based
on n residuals ε1; ε2; : : : ; εn of dimension q, with both n and q
fairly large. Let δi ¼ εTi Σ̂

−1εi (with Σ̂ ¼ ð1∕n − 1ÞjPn
i¼1 εiεTi

being the standard sample covariance matrix) be a measure of
how likely εi is. When the residuals are Gaussian, it follows from
arguments involving the central limit theorem that the distribution
of δi is approximately Gaussian with mean q and variance 2q.
Clever use of Jensen’s inequality and the moment generating func-
tion of the Gaussian distribution then shows that the maximum of n
such Gaussian variables is bounded by qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q logðnÞp

. The range
spanning estimation method consists of checking whether any of
the δi exceed this bound. If some do, we reestimate a covariance
matrix Σ̂max representative for the most extreme residuals, and
we cleverly merge that with Σ̂. Σ̂max is computed by taking the sam-
ple covariance of the most extreme residuals only, while still
making sure sufficiently many are included to secure stability.
The merged covariance matrix is denoted by Σ̂span and is required

to span both Σ̂max and Σ̂ in the sense that bothΣ̂−1 − Σ̂−1
span and
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Σ̂−1
max − Σ̂−1

span are positive semidefinite, i.e., that xTΣ̂−1
spanx ≤

maxfxTΣ̂−1x; xTΣ̂−1
maxxg for all x. This is obtained by ensuring that

the inequality holds for all generalized eigenvectors of Σ̂max with
respect to Σ̂. After reestimation and merging, Σ̂ is set equal to
Σ̂span and δi is recomputed. The procedure is repeated until no re-
siduals are very large compared with the bound.

APPENDIX B

DISTRIBUTIONS

Result: Merging two Gaussian distributions

Let xjy ∼ NxðHy;Σ0Þ for some nonrandom matrix H and
y ∼ Nyðμ;ΣÞ. Then, x ∼ NxðHμ;HΣHT þ Σ0Þ.

Proof: The two relations are equivalent to x ¼ Hyþ ε0,
y ¼ μþ ε, where ε0 ∼ Nε0ð0;Σ0Þ independently of ε ∼ Nεð0;ΣÞ.
Hence, x ¼ Hðμþ εÞ þ ε0 ¼ Hμþ ε 0, where ε 0 ¼ Hεþ ε0 ∼
Nε0ð0;HΣHT þ Σ0Þ, which again is equivalent to x ∼ NxðHμ;
HΣHT þ Σ0Þ.

Two- and four-parameter beta distributions

The (two-parameter) beta distribution Betaða; bÞ has shape
parameters a; b and continuous probability distribution function
f2ðy; a; bÞ ∝ ya−1ð1 − yÞb−1; y ∈ ½0; 1�. It has mean a∕ðaþ bÞ
and variance ab∕½ðaþ bÞ2ðaþ bþ 1Þ�.
The four-parameter beta distribution Beta4ða; b; c; dÞ is a Be-

taða; bÞ-distribution scaled and shifted to match the support ½c; d�.
Its probability distribution function is scaled by d − c and shifted
by c: f4ðy;a;b;c;dÞ∝f2ððy−cÞ∕ðd−cÞ;a;bÞ;y∈ ½c;d�; its mean
is ½aðd − cÞ�∕ðaþ bÞ þ c; and its variance is ½abðd − cÞ2�∕
½ðaþ bÞ2ðaþ bþ 1Þ�.

APPENDIX C

WEIGHTED MONTE CARLO WITH
CONDITIONAL SAMPLING

In some cases, one may wish to apply the weighted Monte Carlo
routine when conditioning on the event that rA is contained in some
part or block of the sample space. That may in particular be the case
when the prior distribution for rA has discrete and continuous parts
because such parts are best treated separately. The technique may
also be used to oversample a priori unlikely parts of the sample
space of pðrAÞ to increase the overall accuracy of the weighted
Monte Carlo routine.
Choose the conditions, say, Ej; j ¼ 1; : : : ; J, such that their cor-

responding blocks on the sample space form a partition, i.e., that the
blocks are nonempty disjoint sets whose union is the sample space
itself. Assume further that the enumerated routine defined in the
weighted Monte Carlo section is carried out J times, once with prior
samples conditioned on each of the Ej. Denote, respectively, the
extracted rA value and corresponding unnormalized and normalized
importance weights for the l-th prior sample in the j-th run by rðl;jÞA ,
vðl;jÞ and wðl;jÞ, l ¼ 1; : : : ; Lj, j ¼ 1; : : : ; J. Quantities conditioned
on Ej may be computed analogous to the unconditional ones with
weights and samples replaced by those for the j-th condition. For

instance, p�ðrAjd; EjÞ ¼
PLj

l¼1 w
ðl;jÞ1frðl;jÞA ¼ rAg for discrete distribu-

tions, and p�ðrAjd; EjÞ ¼
PLj

l¼1 w
ðl;jÞKhðrA − rðl;jÞA Þ for continuous

distributions. Further, the posterior probability of each condition Ej

may be computed by

p�ðEjjdÞ ¼
pðEjÞ 1

Lj

PLj

l¼1 v
ðl;jÞ

P
J
i¼1 pðEiÞ 1

Li

PLi
l¼1 v

ðl;iÞ (C-1)

Finally, the unconditioned approximated posterior distribution
may be computed byp�ðrAjdÞ ¼

P
J
j¼1 p

�ðrAjd; EjÞp�ðEjjdÞ.
Other unconditioned quantities may be computed similarly using
the derived quantities and posterior probabilities for each condition
p�ðEjjdÞ, j ¼ 1; : : : ; J, or directly via p�ðrAjdÞ.

APPENDIX D

RESOLUTION THEORY FOR SELECTING D IN
GENERAL GEOPHYSICAL PROBLEMS

The formulation we have used in the paper considers the geo-
physical relation of equation 7, that is, d ¼ Gmþ ε, with the matrix
G given by the geophysical relations. This is indeed intended be-
cause these types of problems are what we aim to solve. However,
this general form may be limiting when we consider selection of the
local subsetD defining the local data dD. For AVO data, the influence
region may be bounded fairly easily, but when working with e.g., the
rms velocities of Buland et al. (2011), the influence region typically
span all data below the position considered. For these cases, it is use-
ful to consider resolution theory. Left multiplying both sides of
equation 7 by GTðGGTÞ−1 gives d 0 ¼ G 0mþ ε 0, where G 0 ¼
GTðGGTÞ−1G is the standard resolution kernel, and d 0 and ε 0
are, respectively, rescaled data and noise. The resolution kernel will
in general be much more locally focused. If the matrix ðGGTÞ−1 is
not invertible, one could include a ridge term before inverting, or use
some other type of pseudo inversion method to ensure stability of the
inverse. It is also possible to perform a preinversion to focus the en-
ergy in the problem. This is done by left multiplying both sides of
equation 7 by Σ̂mGTðGΣ̂mGT þ ΣεÞ−1, where Σ̂m is an estimate of
the covariance matrix of the geophysical properties and Σε is the
covariance matrix of the errors.
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