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Statistical Embedding: Beyond Principal
Components
Dag Tjøstheim, Martin Jullum and Anders Løland

Abstract. There has been an intense recent activity in embedding of very
high-dimensional and nonlinear data structures, much of it in the data science
and machine learning literature. We survey this activity in four parts. In the
first part, we cover nonlinear methods such as principal curves, multidimen-
sional scaling, local linear methods, ISOMAP, graph-based methods and dif-
fusion mapping, kernel based methods and random projections. The second
part is concerned with topological embedding methods, in particular mapping
topological properties into persistence diagrams and the Mapper algorithm.
Another type of data sets with a tremendous growth is very high-dimensional
network data. The task considered in part three is how to embed such data in a
vector space of moderate dimension to make the data amenable to traditional
techniques such as cluster and classification techniques. Arguably, this is the
part where the contrast between algorithmic machine learning methods and
statistical modeling, represented by the so-called stochastic block model, is at
its greatest. In the paper, we discuss the pros and cons for the two approaches.
The final part of the survey deals with embedding in R

2, that is, visualization.
Three methods are presented: t-SNE, UMAP and LargeVis based on meth-
ods in parts one, two and three, respectively. The methods are illustrated and
compared on two simulated data sets; one consisting of a triplet of noisy Ra-
nunculoid curves, and one consisting of networks of increasing complexity
generated with stochastic block models and with two types of nodes.

Key words and phrases: Statistical embedding, principal component, non-
linear principal component, multidimensional scaling, local linear method,
ISOMAP, graph spectral theory, diffusion mapping, reproducing kernel
Hilbert space, random projection, topological data analysis and embedding,
persistent homology, persistence diagram, the Mapper, network embedding,
spectral embedding, stochastic block modeling, Skip-Gram, neighborhood
sampling strategies, visualization, t-SNE, LargeVis, UMAP.

1. INTRODUCTION

With the advent of the big data revolution, the availabil-
ity of data has exploded. The dimension of the data can be
in the thousands, if not in the millions, and the relation-
ships between data vectors can be exceedingly complex.
Also, data are arriving in new forms. One recent addition
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to data types is network data, sometimes with millions
of nodes, and literally billions of edges (relationships be-
tween nodes). An example is the analysis of porous me-
dia, in oil exploration say, or of astronomical or physio-
logical data. Such data contain cavities and complicated
geometric structures. Another example is in natural lan-
guages with texts containing million of words. Is it pos-
sible to characterize language segments so as to discrimi-
nate one type of text from another?

These examples have to do with the characterization
and simplification of highly complex and often unorga-
nized data. From a mathematical and statistical point of
view, these tasks are examples of embedding problems.

The goal of this survey could be said to be two-fold.
First, to try to give a quite comprehensive survey of em-
bedding methods and applications of these methods. The
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second objective of this article has been to make the sta-
tistical community more aware of current methods in this
branch of data science bordering on machine learning.

Here is a brief overview of the contents of the paper.
Section 2 gives a brief summary of principal components
and points out some strengths and weaknesses. There are
now a number of novel nonlinear methods, some of them
in fact with roots going far back in time. In Section 3,
we look at methods such as principal curves and sur-
faces, multidimensional scaling, local linear embedding,
embedding via graphs (note that in this survey the terms
“graph” and “network” will be used interchangeably),
ISOMAP and Laplace eigenmaps, diffusion maps, kernel
principal components using reproducing kernel Hilbert
spaces and random projections. Section 4 has to do with
the emerging field of topological data analysis and topo-
logical manifold embedding. Section 5 deals with embed-
ding of network data, especially ultra high-dimensional
networks. This is a topic of great practical interest, as
can be understood for instance from the recent advances
within social network analysis. Arguably, this is the theme
where the contrast between algorithmic machine learn-
ing methods and statistical modeling is at its most pro-
nounced. We discuss the pros and cons for the two ap-
proaches in Sections 5.2.4 and 5.7. Open problems in
heterogeneous, directed and dynamic networks are also
briefly covered in Section 5.

Finally, in Section 6, we go on to the extreme case of
having an embedding of dimension 2, the plane. This has
to do with visualization, of course, and we are presenting
three visualization methods, t-SNE, LargeVis and UMAP,
whose basis can be found in each of the preceding sec-
tions, namely nonlinear type embedding, network embed-
ding and topological embedding. They are compared to
principal component visualization.

To our knowledge, our survey paper is the first of
such broad coverage. To avoid an overlong paper, some
of the more technical and detailed aspects of the sur-
veyed methods are relegated to the Supplementary Ma-
terial (Tjøstheim, Jullum and Løland, 2023). There are
many unsolved statistical problems, and we will try to
point out some of these as we proceed.

We have chosen to illustrate our methods by two types
of simulation experiments. First, a triple of noisy Ranun-
culoid (a concept originating in flower forms in botany)
curves encapsulated in one another (cf. Figure 1(a)) (a sit-
uation in which principal components do not work), il-
lustrates a number of the nonlinear methods of Section 3
and the topological embedding of Section 4. As a second
example, we have included a network based simulation,
generated by stochastic block models, with two types of
nodes and varying degrees of complexity in their inter-
action. Among other things, these are used to illustrate
and compare the three visualization methods of Section 6,

for several choices of their input parameters. In the paper,
we also refer to real data experiments that have been con-
ducted especially in the network embedding literature.

2. PRINCIPAL COMPONENTS

Principal component analysis (PCA) was invented by
Pearson (1901) as an analogue of the analysis of princi-
pal axes in mechanics. It was later independently devel-
oped by Harold Hotelling in the 1930s; see, for example,
Hotelling (1933) and Hotelling (1936).

Given p-dimensional observations X1, . . . ,Xn, the
Hotelling approach was along the lines that have since
become standard: Let Xi, i = 1, . . . , n have components
Xij , j = 1, . . . , p. The first principal component V1 =
{aj1} consists of the weights, which gives the linear com-
bination

∑p
j=1 aj1Xij maximum variance subject to the

constraint that the Euclidean norm ‖V1‖ = 1. The kth
principal component Vk = {ajk} corresponds to the linear
combination

∑p
j=1 ajkXij with the maximum variance

subject to ‖Vk‖ = 1, and it being orthogonal to previously
found Vj ,1 ≤ j ≤ k − 1. Or said in another way, the prin-
cipal components constitute a sequence of projections in
R

p of the data, mutually uncorrelated and ordered in vari-
ance.

Let � be the p ×p population covariance matrix. Then
it is well known (see, e.g., Jolliffe, 2002), that the princi-
pal components Vk are obtained by solving the eigenvalue
problem

(1) �Vk = λkVk,

where the largest eigenvalue λ1 corresponds to the first
principal component V1, and where the variance ex-
plained by the kth principal component is given by
λk/

∑p
i=1 λi .

The estimated principal components are obtained by
considering an estimate of �. Let X be the n×p centered
data matrix X = {(Xij − X̄j )} with X̄j = n−1 ∑

i Xij ,
then an estimate of � is obtained from n−1[XT X], and
the estimated eigenvectors and eigenvalues are obtained
from

(2) XT XV̂ = λ̂V̂ .

The approach of Pearson (1901) is different, and the
essence of his method is that he looks at a set of m princi-
pal components as spanning a hyperplane of rank m in R

p

such that the sum of the distances from the data points to
this hyperplane is minimized. The first principal compo-
nent is then the line in R

p obtained by such a minimiza-
tion. As will be seen, it is the Pearson approach, which is
most amenable to generalizations to the nonlinear case.

Before we close this section, there is cause to ask why
linear principal component analysis is so useful. It is
clearly the most used statistical embedding method. Why?
There are several reasons for this. One is its potential to
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reduce the dimension of the original data. If a few prin-
cipal components explain a large percentage of the vari-
ation, this in many cases means that the ensuing analysis
can be concentrated to those components. These compo-
nents can also be used henceforth in a factor analysis. And
the number of needed components can often be decided
by a clear cut percentage of variation explained, which, as
was seen above, is straightforward to compute given the
eigenvalues of the covariance matrix.

Principal components have been used with great suc-
cess in a number of different fields, so diverse as, for ex-
ample, quantitative finance, medicine, neuroscience, ge-
netics, meteorology, chemistry, and recognition of hand-
written characters. Many applications and the basis of
the theory are given in the book by Jolliffe (2002). It is
also quite robust and can work reasonably well for cer-
tain types of nonlinear systems, as seen in the compara-
tive review by van der Maaten, Postma and van der Herik
(2009).

However, there are also several shortcomings of linear
principal components, which have inspired much recent
research. The most obvious fault is the fact that it is a
linear method, and data are often nonlinearly generated
or located on or close to a submanifold of R

p . This is
sometimes aggravated by the fact that the PCA is based
on the covariance matrix, and it is well known that a co-
variance between two stochastic variables is not always
a good measure of statistical dependence. This has been
particularly stressed in recent dependence literature, a sur-
vey of which is given in Tjøstheim, Otneim and Støve
(2022a). Especially there exist statistical models and data
where the covariance is zero although there may be a
strong statistical dependence. An example is the so-called
ARCH/GARCH time-series models for financial risk.

To do statistical inference in PCA often a Gaussian as-
sumption is added as well. For Gaussian variables the co-
variance matrix describes the dependence relations com-
pletely, so that it would be impossible to improve on the
PCA embedding by a nonlinear embedding. But increas-
ingly, data sets are appearing where the Gaussian assump-
tion is not even approximately true. Moreover, the di-
mension of data may be extremely large, not making it
easily amenable to principal component analysis, which
involves the solution of a p-dimensional eigenvalue prob-
lem. Note, however, that for practical purposes the first
k � p eigenvectors typically suffices even for complex
high-dimensional settings. Such situations are handled in
modern PCA software by utilizing extensions of the so-
called Lanczos algorithm; see, for example, Baglama and
Reichel (2005).

3. NONLINEAR EMBEDDINGS

There are a variety of possible nonlinear dependence
structures, for each of which there are particular nonlinear
algorithms adapted to the given structure.

For the so-called principal curve method (Hastie, 1984),
the data are supposed to be concentrated roughly on a
curve or more generally on a submanifold. Although in
this case the data are not well represented by a linear
model, they may still be well approximated by a local lin-
ear model giving rise to the LLE method (Roweis and
Saul, 2000) or to ISOMAP (Tenenbaum, de Silva and
Langford, 2000). Alternatively, the data may lie on a
chained nonconvex structure; see, for instance, the exam-
ple in Figure 1. For such and similar structures, one may
try to map the dependence properties to a graph, lead-
ing to a Laplace eigenvalue problem (Belkin and Niyogi,
2002), and in its continuation to diffusion maps (Coifman
and Lafon, 2006). In still other situations, it may be ad-
vantageous to use a nonlinear transformation of the data
points, and then solve a resulting eigenvalue problem,
as is done in kernel principal components (Schölkopf,
Smola and Müller, 2005). One of the classical nonlinear
methods is multidimensional scaling (MDS) (Torgerson,
1952), where an embedding is sought by preserving dis-
tances between individual data points. A combined linear
and distance preserving method is represented by random
projections, whose rationale is based on Johnson and Lin-
denstrauss (1984). All of these methods are presented in
more detail in the following subsections, and most are il-
lustrated in Figure 1.

3.1 Principal Curves and Surfaces

As mentioned in Section 2, it is the Pearson’s hyper-
plane fitting that is perhaps the best point of departure for
nonlinear PCA. Principal curves and surfaces were intro-
duced in Hastie (1984) and Hastie and Stuetzle (1989).
A brief summary is given in Hastie, Tibshirani and Fried-
man (2019, pages 541–544). Essentially, the idea is to re-
place the hyperplane by a hypersurface. It is simplest in
the case of principal curves, generalizing the first princi-
pal component. Let f (s) be a parameterized smooth curve
in R

p . The parameter s in this case is a scalar and can
for instance be arc-length along the curve. For each p-
dimensional data value X, one lets sf (X) be the point on
the curve closest to X. Then f (s) is called a principal
curve for the distribution of the random vector X if

f (s) = E
(
X|sf (X) = s

)
.

This means that f (s) is the average of all data points
that project onto it. This is known as the self-consistency
property. In practice, it turns out (Duchamp and Stuet-
zle, 1996) that there are infinitely many principal curves
for a given multivariate distribution, but one is interested
mainly in the smooth ones.

3.1.1 Algorithm for finding one principal curve f (s).

1. Definitions of coordinate functions and X. Consider
the coordinate functions f (s) = [f1(s), . . . , fp(s)] and
let X be the p-dimensional observational vector given by
XT = (X1, . . . ,Xp).
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FIG. 1. Four different embedding methods applied to three parametric curves from the so-called Ranunculoid and perturbed by Gaussian noise
with a standard deviation of 1/2.

2. The two alternating steps:

(3) E
(
Xj |ŝf (X) = s

) → f̂j (s); j = 1, . . . , p

and

(4) argmin
s′

∥∥X − f̂
(
s′)∥∥2 → ŝf (X).

Here, the first step (3) fixes s and enforces the self-
consistency requirement. The second step (4) fixes the
curve and finds the closest point on the curve to each data
point. The principal curve algorithm starts with the first
linear principal component, and iterates the two steps in
(3) and (4) until convergence is obtained using a given
tolerated error.

Principal surfaces generalize principal curves to higher
dimensional representations. The most commonly used
is the two-dimensional principal surface with coordinate
functions

f (y1, y2) = [
f1(y1, y2), . . . , fp(y1, y2)

]
.

The estimates in step (3) and (4) above are obtained from
two-dimensional surface smoothers. The scheme with a

quantification of percentage reduction of variance seems
to be lost in a principal curve and principal surface set-up.
A different but related approach is taken by Ozertem and
Erdogmus (2011), where principal curves and surfaces are
studied in terms of density ridges. See also Section 4.1
for generalizations to non-Euclidean spaces and so-called
manifold learning.

In Figure 1, we present a data set that will be used for
illustration purposes throughout this section and also in
Section 4 on topological data analysis. The raw data are
presented in Figure 1(a). It consists of parts of three para-
metric curves, each being obtained from the so-called Ra-
nunculoid, but with three different parameter sets. In ad-
dition, the curves have been perturbed by Gaussian noise.
In Figure 1(b), we have illustrated the construction of a
principal curve on the innermost curve of Figure 1(a).
The main one-dimensional structure of the curve is well
picked up, but it does not quite get all the indentions of the
original curve. Compared to a linear principal regression
curve it is a big improvement.
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3.2 Multidimensional Scaling

The idea of multidimensional scaling (MDS) goes far
back, but similar ideas have recently got a revival in
statistical embedding through algorithms such as LLE,
ISOMAP (see the next subsections) and t-SNE (see Sec-
tion 6). It can be roughly formulated as finding suitable
coordinates for a set of points given their mutual dis-
tances. This problem was first considered by Young and
Householder (1938). These methods were further devel-
oped and applied to scaling of psychometric distances be-
tween pairs of stimuli by Torgerson (1952). A fine review
of the essentials of multidimensional scaling is given in
Hastie, Tibshirani and Friedman (2019, pages 570–572).
Their emphasis is on viewing multidimensional scaling
as a general method for dimensionality reduction of data
in R

p . They therefore start with a set of observations
X1, . . . ,Xn ∈ R

p where dij is some form of distance mea-
sure (not necessarily Euclidean) between observation Xi

and Xj . In fact, in the general theory of multidimensional
scaling the dij may be considered as a dissimilarity mea-
sure between objects (e.g., psychological stimuli) i and j .

From a dimension reduction point of view, multidimen-
sional scaling seeks values Y1, . . . , Yn ∈ R

m, often m = 2
for visualization purposes, by minimizing the so-called
stress function

S(Y1, . . . , Yn) = ∑
i �=j

(
dij − ‖Yi − Yj‖)2

,

which means choosing {Yj , j = 1, . . . , n} such that one
strives to preserve distances when going from R

p to R
m.

This is known as the least squares or Kruskal–Shephard
scaling. A gradient descent algorithm can be used to min-
imize S. A variation on this is the so-called Sammon map-
ping, Sammon (1969), which minimizes

SSm(Y1, . . . , Yn) = ∑
i �=j

(dij − ‖Yi − Yj‖)2

dij

.

Note that multidimensional scaling creates an embed-
ding between two Euclidean spaces, Rp and R

m. This is
different from principal surfaces (Section 3.1) and many
of the other methods in this survey, which creates embed-
dings from R

p to a lower-dimensional manifold.

3.3 LLE—Local Linear Embedding

Principal curves and surfaces represent an early exam-
ple of local modeling and manifold embedding. Manifold
embedding will be taken up from a more general point of
view in Section 4 with its connections to recent advances
in TDA (Topological Data Analysis). However, it is con-
venient at this point to briefly mention the early work of
Roweis and Saul (2000) that resembles the principal sur-
face methodology in that it is a local method. In fact, it is
a local linear model, and locally linear methods are well

known and much used in nonparametric regression. But
here the viewpoint is different since there is no clearly de-
fined dependent variable. Actually in that respect, it is like
the recent local Gaussian modeling of Tjøstheim, Otneim
and Støve (2022b).

Suppose that the data X1, . . . ,Xn are p-dimensional
vectors sampled from an inherent m-dimensional mani-
fold. One assumes that each data point lies on or close to
a locally linear patch of the manifold. The local geometry
of these patches is characterized by linear coefficients that
reconstruct each data point from its neighbors.

The LLE algorithm consists of three main steps:

1. Find the nearest neighbors N(i) of Xi , for example,
by a nearest neighborhood algorithm, such as kNN (k-
nearest neighbors).

2. Construct weights wij by minimizing the cost func-
tion (5) subject to the constraint that wij = 0 if xj does
not belong to the set of neighbors of Xi , and such that∑

j wij = 1. Weights for nonneighbors are 0.

(5) M1(w) = ∑
i

∥∥∥∥Xi − ∑
Xj∈N(i)

wijXj

∥∥∥∥
2
,

3. Map each high-dimensional observation Xi to a
low-dimensional vector Yi representing global internal
coordinates on the manifold. This is done by choosing m-
dimensional coordinates to minimize the embedding cost
function over Y ,

(6) M2(Y ) = ∑
i

∥∥∥∥Yi − ∑
j

wijYj

∥∥∥∥
2
,

where the weights wij are fixed to the values obtained in
step 2. The optimization in (6) can be done by solving a
sparse m × m eigenvalue problem.

The assumption of Roweis and Saul (2000) is here that
one can expect the wij -characterization of local geome-
try in the original data space to be equally valid for local
patches of the manifold. In particular, the same weights
wij that reconstruct the ith data point in p dimensions
should also reconstruct its embedded manifold coordi-
nates in m dimensions.

From Figure 1(c), it is seen that the three parts of the
Ranunculoid in Figure 1(a) are clearly separated with
LLE, especially in the Y2-direction.

3.4 Embedding via Graphs and ISOMAP

Some of the primary purposes of statistical embedding
is to use the embedded vectors or coordinates for feature
extraction, clustering and classification. The most used
clustering method is probably the K-means algorithm.
(See, e.g., Hastie, Tibshirani and Friedman, 2019, Chap-
ter 14.3.) This method does not work well if the clusters
form nonconvex subsets of the data space. Examples of
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this are the clusters consisting of 3 concentric noisy cir-
cles in R

2, or of the more complicated structure of the
three curves in Figure 1(a).

For a given point cloud in R
p , a method of circumvent-

ing such problems is to embed the points in a similarity
graph or network. Given a set of data points X1, . . . ,Xn,
a similarity measure sij ≥ 0 between Xi and Xj can
simply be the Euclidean distance between Xi and Xj .
The intuitive goal of clustering is to divide the points
into groups such that the similarity between two groups
is weak, whereas the similarity between points within a
group is typically strong. If we do have similarity infor-
mation between the points, a convenient way to represent
this is to form a similarity graph G = (V ,E). Each node
vi ∈ V in the graph represents a data point Xi . Two nodes
in the graph are connected if their similarity sij ≥ τ for
some threshold τ > 0. The similarity weights sij are used
as edge weights wij . The problem of clustering can now
be reformulated using the similarity graph: one wants to
find a partition of the graph such that the edges between
different groups have low weight, and the edges within a
group have high weights.

Given a point cloud in R
p there are several ways of

constructing a corresponding similarity graph:

(i) The ε-neighborhood graph: Here, one connects all
points, and gives them weight wij = 1, that have pairwise
distances less than ε.

(ii) k-nearest neighbor graph: Here, one can connect
node vi with node vj if vj are among the k nearest neigh-
bors of vi . Symmetrization leads to an undirected graph
and wij = sij .

(iii) The fully connected graph: All points with posi-
tive similarity are connected with each other, and we take
wij = sij . As an example of a similarity measure, one can
take sij = exp(−‖Xi − Xj‖2/2σ 2), where σ is a param-
eter that controls the strength of the similarity.

An early concrete graph embedding algorithm is
ISOMAP (Tenenbaum, de Silva and Langford, 2000,
de Silva and Tenenbaum, 2002). Apart from clustering,
ISOMAP has gained considerable use as a nonlinear di-
mension reduction method, by combining graph repre-
sentation with multidimensional scaling seeking distance
preservation; see op. cit. references for details. The input
is the distances dX(i, j) between all pairs of Xi and Xj

of the n data points. The output is m-dimensional vectors
Yi in R

m. The algorithm consists of three main steps:

1. Construct the neighborhood graph G according to
(i) or (ii) above. Set edge lengths equal to dX(i, j).

2. Compute shortest paths dG(i, j) between all pairs in
the graph G, for example, by Dijkstra’s algorithm or the
Floyd–Warshall algorithm (Cormen et al., 2022).

3. Construct m-dimensional embeddings Yi by apply-
ing multidimensional scaling from Section 3.2 to the ma-
trix of graph distances DG = {dG(i, j)}.

The results of applying the ISOMAP algorithm on the
curves in Figure 1(a) are given in Figure 1(d). The curves
are well separated both in the MDS1 and MDS2 direc-
tions.

3.5 Graph Representation and Laplace Eigenmaps

In this subsection, we will just give a brief presentation
of Laplace eigenmaps and graph spectral theory mainly
based on Belkin and Niyogi (2002, 2003). As elsewhere
in this section, we start with a point cloud in R

p . We then
aim at reducing the dimension by searching for a manifold
embedding of lower dimension.

In Section 5, we will start with a network and use graph
spectral theory to find an embedding of the network in
Euclidean space or on a manifold such that it can subse-
quently be used for purposes of clustering and classifica-
tion. A few more details of graph spectral theory will be
given then.

To introduce Laplacian eigenmaps, we need some more
graph notation: The weighted adjacency matrix of the
graph is the matrix A = {aij }, i, j = 1, . . . , n, where
aij = wij is the weight on the edge between nodes vi and
vj . If aij = 0, this means that the nodes vi and vj are not
connected by an edge. We still assume that the graph is
undirected so that aij = aji . The degree of a node vi ∈ V

is defined as

(7) di =
n∑

j=1

aij =
n∑

j=1

wij ,

with aii = 0. The degree matrix D is defined as the diago-
nal matrix with the degrees d1, . . . , dn along the diagonal.

The Laplacian eigenmap algorithm consists of three
main steps:

1. A graph is constructed using the strategy outlined in
(i), (ii) or (iii) of Section 3.4. This is used to establish the
edges of the graph.

2. The weights of the edges are determined. Belkin and
Niyogi (2003) present two choices. The first choice, as in
Section 3.4, is to choose the so-called heat kernel

(8) wij = exp−‖Xi−Xj‖/σ

if the nodes are connected using the ε-strategy of Sec-
tion 3.4, and putting wij = 0 if they are not connected.
A second alternative is just to let wij = 1 if vi and vj are
connected, and wij = 0 if not.

3. Find the Laplacian eigenmaps. Assume that the
graph G as constructed above is connected. If not, use
the algorithm given below for each connected component.
Define the Laplacian matrix by L = D − A, where D and
A are, respectively, the degree and adjacency matrix de-
fined above. The Laplacian eigenmaps are then obtained
by solving the eigenvalue problem

(9) Lfi = λiDfi, i = 0,1, . . . , p − 1,
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with

0 = λ0 ≤ λ1 ≤ λp−1,

where it is easily verified that 0 is a trivial eigenvalue
corresponding to the eigenvector f0 = [1,1, . . . ,1]. This
eigenvector is left out, and the next m eigenvectors are
used for an embedding in m-dimensional Euclidean space

Xi →
m∑

j=1

〈Xi,fj 〉fj ,

where 〈·, ·〉 is the inner product in R
p . The Laplacian

eigenmaps preserve local information optimally in a cer-
tain sense (Belkin and Niyogi, 2003).

3.6 Diffusion Maps

The representation of the Laplace matrix and a corre-
sponding Laplace–Beltrami diffusion operator is just one
way of finding a meaningful geometric description of a
data set. As will be seen in this subsection, it is possible
to introduce an associated Markov chain that can be used
to construct coordinates called diffusion maps.

Following Coifman and Lafon (2006), it is convenient
to think of the data set X as a measure space (X,B,μ)

with an associated kernel k satisfying k(x, y) = k(y, x)

and k(x, y) ≥ 0. In terms of Section 3.5, k may be associ-
ated with the adjacency matrix A, and μ(x) with the dis-
crete measure with μ(xi) = 1/n, where n is the number of
observations. Generally, we let d(x) = ∫

X k(x, y) dμ(y),
which corresponds to the definition of degree in (7).

The next step is to introduce the probability transi-
tion distribution p(x, y) = k(x, y)/d(x). Then clearly∫

X p(x, y) dμ(y) = 1, and p can be viewed as a transition
kernel of a Markov chain on X. The operator Pf (x) =∫

X p(x, y)f (y) dμ(y) is the corresponding diffusion op-
erator.

A main idea of the diffusion framework is that running
the Markov chain forward in time, or equivalently, taking
larger powers of P , will allow one to reveal relevant geo-
metric structures of different scales. We denote by pL the
L-step transition kernel.

The Markov chain has a stationary distribution, it is re-
versible and if X is finite and the graph of the data is con-
nected, then it is ergodic (cf. Coifman and Lafon, 2006).
Further, P has a discrete sequence of eigenvalues {λi}
and eigenfunctions ψi such that 1 = λ0 ≥ λ1 ≥ · · · , and
Pψi = λiψi . This corresponds to the eigenvalue problem
in (9).

Let π(x) be the stationary distribution of the Markov
chain. Coifman and Lafon (2006) show that the family of
so-called diffusion distances {DL} can be written as

DL(x, y)2 =
∫

X

(
pL(x,u) − pL(y,u)

)2 dμ(u)

π(u)

= ∑
i≥1

λ2L
i

(
ψi(x) − ψi(y)

)2
.

(10)

Since the eigenvalues in (10) are less than one, the ex-
pansion can be broken off after a finite number of terms
m(δ,L), where m(δ,L) = max{i ∈ N}, such that |λi |L >

δ|λ1|L, where δ is a measure of the precision desired
in this approximation. Each component λL

i ψi(x), i =
1, . . . ,m(δ,L) is termed a diffusion coordinate, and the
data are mapped into an Euclidean space of dimension
m(δ,L).

By choosing the kernel k appropriately, various diffu-
sion operators can be obtained. We refer to Coifman and
Lafon (2006) for more details.

There are a number of applications of diffusion maps.
For an application to gene expression data, see Haghverdi,
Buettner and Theis (2015).

3.7 Kernel Principal Components

The standard linear Fisher discriminant seeks to dis-
criminate between two or more populations by using the
global Gaussian likelihood ratio method in an attempt
to separate the populations linearly by separating hyper-
planes. This is of course not possible for the data in
Figure 1(a). An alternative is to use a local Gaussian
Fisher discriminant, which leads to nonlinear hypersur-
faces (Otneim, Jullum and Tjøstheim, 2020). Still another
possibility is to use transformations of the original data
into nonlinear features and then try to find linear hyper-
planes in this feature space. To find the linear hyperplanes,
scalar products between vectors are used; this being the
case both in the linear Fisher discriminant and in case
there is a nonlinear feature space. As a function of the
original coordinates of observations, the inner product in
the feature space is termed a kernel. The support vector
machine (SVM) discrimination analysis is based on such
an idea.

An analog procedure can be used in so-called kernel
PCA (Schölkopf, Smola and Müller, 2005). Consider a set
of data vectors X1, . . . ,Xn with Xi ∈ R

p that sums to the
zero-vector. Recall that in ordinary principal components
analysis the estimated principal components are found by
solving the eigenvalue problem Cf = λf , where, C is the
empirical p × p covariance matrix given by

C = 1

n

n∑
i=1

XiX
T
i ,

and corresponding to the matrix XT X in Section 2. In
kernel PCA, the starting point is to map the data vector
Xi into a nonlinear feature vector 	(Xi), 	 : Rp → F ,
where F is an inner product space in general different
from R

p , such that
∑n

i=1 	(Xi) = 0.
Consider the n×n matrix K	 = {〈	(Xi),	(Xj )〉} and

the eigenvalue problem

(11) K	α = nλα,
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where α is the column vector with entries α1, . . . , αn.
Let f l be the lth eigenvector corresponding to nonzero
eigenvalues. It can be shown that (Schölkopf, Smola and
Müller, 2005) for principal components extraction, one
can compute the projections of the image of a data point
X onto the eigenvectors f l according to

(12)
〈
f l,	(X)

〉 =
n∑

i=1

αl
i

〈
	(Xi),	(X)

〉
.

Please observe that neither (11) nor (12) requires the
	(Xi) in explicit form. All that is required is their inner
product, termed the kernel. Replacing 	(X), 	(Y) by the
kernel is known as the kernel trick (Ajzerman, Brawerman
and Rozonoer, 1956, Boser, Guyon and Vapnik, 1992).
The point is that one can start with a suitable kernel in-
stead of having to do the mapping 	(X). It can be shown
by methods of functional analysis that there exists for any
positive definite kernel k, a map 	 into some inner prod-
uct space F , such that k constitutes the inner product of
this space. This space would in general be of infinite di-
mension (function space), so there it is the opposite of
dimensionality reduction. To show that this works and to
put this into a rigorous mathematical context, one uses
the framework and the properties of a reproducing ker-
nel Hilbert space (RKHS). A recent tutorial is given in
Gretton (2019).

Substituting kernel functions for 〈	(X),	(Y )〉 one ob-
tains the following algorithm for kernel PCA: One com-
putes the dot product matrix

K	 = 〈
	(Xi),	(Xj )

〉 = k(Xi,Xj ),

solve the eigenvalue problem for K	, normalize the
eigenvector expansion coefficient αk and extract princi-
pal components (corresponding to the kernel k, of which
there are several choices) of an observational point X by
computing projections on the eigenvectors as in equation
(12). The general question of choosing an optimal kernel
for a given problem is unsolved both for kernel PCA and
SVM.

The results of using the kernel principal component
method on the data in Figure 1(a) can be seen in Fig-
ure 1(e). The curves are clearly separated along the sec-
ond kernel principal component. The two dents in the two
innermost curves of Figure 1(a) are also reproduced.

It is of interest to look at the curves in Figure 1(a)
and their nonlinear representations when the noise is in-
creased. This is done in Figure 2. In Figure 2(a), it is seen
that with the increased noise the two innermost curves are
not separated any more, but rather form a quite compli-
cated closed curve. The principal curve for the innermost
curve (with the other two removed) is seen in Figure 2(b).
The overlap of the two innermost curves is clearly seen
for the local linear embedding, the ISOMAP and the ker-
nel principal component in Figures 2(c)–2(e). It seems

that only kernel principal component is close to separat-
ing the original three curves. For the two others, the two
innermost curves coalesce. In fact, for local linear embed-
ding, the innermost curve more or less degenerates to two
points.

The ISOMAP picture is also interesting. The innermost
curve is split into two opposite curves. This is consistent
with the gap in the innermost curve in the middle of it.
It is also worth noting that the loop formed on the left-
hand side of the two innermost curves is reproduced at
the bottom of the ISOMAP plot.

3.8 Random Projection

A number of embedding methods depends on a lin-
ear or nonlinear transformation of the data. This is for
instance the case for principal components, where the
transformation is found by solving an eigenvalue prob-
lem involving the data. To be more specific, let us return
to the principal component method of Section 2. Here,
there is a n × p data matrix X. Estimated principal com-
ponents V̂1, . . . , V̂m are then found by solving the eigen-
value problem (2). Let us denote by V̂ the p × m ma-
trix V̂ = [V1, . . . , Vm] of the first m principal components.
Then an embedding to the m-dimensional space is essen-
tially done by the transformation X̃ = XV̂. For a large p

this is burdensome computationally. Similarly, the dimen-
sion of the eigenvalue problem may be in the millions
for the eigenvalue problem (9) for graph representation.
When cross-validation routines are added for training in
a possible classification problem the amount of computa-
tions is prohibitive (Josse and Husson, 2012).

There is, however, another and very different way to
avoid the high computational cost. This is via the so-
called random projection method, whose rationale is
based on the Johnson–Lindenstrauss lemma, Johnson and
Lindenstrauss (1984). In a random projection algorithm,
the transformation matrix V̂ based on the data is sim-
ply replaced by a matrix U such that X̃ = XU, where
each element of the matrix U is obtained by drawings
from a random variable. In a normal random projection
(cf. Li, Hastie and Church, 2007, Section 2.1), the ele-
ments Uij are all sampled i.i.d. from a standard normal
Uij ∼ N(0,1).This certainly implies an enormous saving
of computational cost, but one may ask whether it makes
sense. After all, the matrix U is drawn independently of
the data X.

The Johnson–Lindenstrauss lemma is helpful here. This
says that under relatively mild conditions distance re-
lationships are kept approximately invariant under the
random projection. There are many formulations of this
lemma. We state the one used in Li, Hastie and Church
(2007, Lemma 2): If m > G(2 logn − log δ)/ε2, where
G = 4/(1 − 2ε/3), then with probability at least 1 − δ,
and remarkably, independent of X and p, the squared l2
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FIG. 2. Four different embedding methods applied to three parametric curves from the so-called Ranunculoid and perturbed by more Gaussian
noise than in Figure 1(a) (we have used a standard deviation of 2 instead of 1/2 for the noise here).

distance between any pair of projected data points can be
approximated within a factor of (1 ± ε), (0 < ε < 1), of
the squared l2 distance of the original data after normal
random projections. Alternative formulations and proofs
can be found in, for example, Ghojogh et al. (2021).

Several attempts have been made to apply the random
projections to clustering, classification and regression.
Perhaps not unexpectedly, it has been found that random
projections may fail exactly because the transformation
U is constructed without taking the intrinsic structure of
the original data into account. This issue has been sought
avoided in various ways (Cannings and Samworth, 2017,
Xie, Li and Xue, 2018).

3.9 A Few Other Techniques

There are several other alternative methods in nonlin-
ear dimension reduction. Perhaps the most used one is
Independent Components Analysis (ICA). The main con-
cepts of the method are described in a much cited paper
by Hyvärinen and Oja (2000).

In ICA, the aim is again to obtain latent factors, and in
format the decomposition is the same as the PCA decom-

position except that the components are now required to
be independent. One might remark that ICA essentially
starts from a factor analysis solution to dimension reduc-
tion and looks for rotations that lead to independent com-
ponents. From this point of view, ICA is just another fac-
tor rotation along with the traditional varimax and quarti-
max.

Two other methods will be very briefly mentioned.
These are both neural network based methods. One of
them consists in so-called autoencoding in deep neural
networks, and can be represented by Hinton and Salakhut-
dinov (2006). The other is the method of self-organizing
maps, which can be said to have originated by another
much cited paper, Kohonen (1982).

4. TOPOLOGICAL EMBEDDINGS AND
TOPOLOGICAL DATA ANALYSIS (TDA)

The present section concerns topological embeddings
and data analysis. We will divide our exposition in three
parts, manifold learning, persistent homology, and finally
the Mapper algorithm. It is the persistent homology part
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that is usually identified with TDA. Our point of departure
is in all cases a point cloud in R

p . In part one, the objec-
tive is to examine whether there is a possibility of em-
bedding the point cloud in a lower-dimensional manifold.
In the two other parts, the aim is to try to find additional
topological features that may characterize the point cloud
and its embedding. In order to avoid an overlong paper,
parts of the TDA survey have been moved to the Supple-
mentary Material (Tjøstheim, Jullum and Løland, 2023).
A main introductory reference to manifold learning and
TDA is Chazal and Michel (2021).

4.1 Manifold Learning

Already in the Pearson (1901) treatment of principal
components, the point cloud of data is embedded on a
hyperplane in R

p . The approach of ISOMAP and local
linear embedding are early examples of representing the
data in a lower-dimensional manifold.

A main aspect of manifold learning is that one looks
for a non-Euclidean subspace to make an embedding that
may not easily be achieved in an Euclidean space R

m,
but more efficiently on a manifold. One trivial example
is the case where the point cloud in the plane is con-
centrated on a circle with only small additional perturba-
tions. The data can then essentially be reduced from two-
dimensional space (the plane), not to the line (R ), but
to the circle, which is a one-dimensional manifold. For a
more complex example, we refer to the Ranunculoid of
Figure 1(a).

In the more general case, manifold learning consists in
finding a smooth compact submanifold S of Rp on which
the point cloud data may be reasonably located.

One may estimate S by trying to cover the data cloud
by a collection of balls of radius ε, such that

(13) Ŝ =
n⋃

i=1

B(Xi, ε),

where n is the number of observations and B(Xi, ε) = {x :
‖x − Xi‖ ≤ ε}, and where Xi is observation number i of
the point cloud. This was suggested by Devroye and Wise
(1980) in another context. If the observations Xi are all
exactly on S and with ε depending on n, it is possible to
prove convergence of Ŝ to S at the rate of OP (logn/n)1/r ,
where r is the dimension of S, and the distance between
S and Ŝ is the Hausdorff distance between sets.

It is not likely that a sample will fall precisely on S.
A more realistic model is that one observes Yi = Xi + δi ,
where Xi comes from a distribution with support on S,
and δi are samples from a noise distribution. In this case,
the convergence rate of the estimation of S is very slow
(Genovese et al., 2012). An interesting example of two-
dimensional data, but where there is a set S of dimen-
sion 1 with a high concentration of data, is the data set of
galaxies treated in Chen et al. (2015a, 2015b).

In a theoretical analysis, often the dimension r of the
embedding manifold is assumed known. In practice, one
may need to estimate r ; see Levina and Bickel (2004),
Little, Maggioni and Rosasco (2011) and Kim, Rinaldo
and Wasserman (2019). It may be possible to estimate an
r-dimensional and high density region R that is close to S.
One way to make this more precise is through the idea of
density ridges.

The ridge set can then be estimated by the ridge of the
kernel density estimator. The properties of this estimator
is studied in Genovese et al. (2014) and Chen, Genovese
and Wasserman (2015). A popular algorithm for finding
the ridge set estimator was given by Ozertem and Er-
dogmus (2011), the so-called SCMS algorithm. Recently,
Qiao and Polonik (2021) proposed two novel algorithms
for estimating ridge lines in ridge regression. They pro-
vide theoretical guaranties for their convergence in proba-
bility using the Hausdorff distance between the estimated
and theoretical ridge. There are no analog results for the
SCMS algorithm.

4.2 Persistent Homology and Persistence Diagrams

In our context, the concept of homology can be seen as
coming from a desire to answer the question of whether
two sets are topologically similar. For instance, is an esti-
mate Ŝ of S topologically similar to S, or is it at all possi-
ble to find an estimate of S that is topologically similar to
S? The answer to this question depends on what is meant
by “similar”.

Two sets S and T equipped with topologies are home-
omorphic if there exists a bicontinuous map from S to T .
Markov (1958) proved that, in general, the question of
whether two spaces are homeomorphic is undecidable for
dimension greater than 4.

However, it is possible to use the weaker notion of ho-
mology, and it is much easier to determine whether two
spaces are homologically equivalent. Strictly speaking,
homology is a way of defining topological features alge-
braically using group theory; see, for example, Carlsson
(2009) for a precise definition. Intuitively, it means that
one can compare connected components, holes and voids
for two spaces. The zeroth-order homology of a set cor-
responds to its connected components. The first-order
homology corresponds to one-dimensional holes (like a
ring structure), whereas the second-order homology cor-
responds to two-dimensional holes (like a soccer ball) and
so on for higher dimensions. If two sets are homeomor-
phic, then they are homologically equivalent, but not vice
versa.

Homology is a main topic of TDA. To establish a link
with the previous subsection, consider the estimate Ŝ =⋃n

i=1 B(Xi, ε) of equation (13). One of the first results
about topology and statistics is due to Niyogi, Smale and
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Weinberger (2008). They showed that under certain tech-
nical conditions the set Ŝ has the same homology as S

with high probability.
In many ways, topological data analysis has been iden-

tified with the subject of persistent homology. This is con-
cerned with the homological structure of data clouds at
various scales of the data, and to see how the homology
changes (how persistent it is) over these various scales;
cf. also Section 3.6. A main introductory source is Chazal
and Michel (2021).

The field of TDA is new. It has emerged from re-
search in applied topology and computational geome-
try initiated in the first decade of this century. Pioneer-
ing works are Edelsbrunner, Letscher and Zomorodian
(2002) and Zomorodian and Carlsson (2005). An early
survey paper at a relatively advanced mathematical level
but with a number of interesting and illustrative exam-
ples is Carlsson (2009). Wasserman (2018) and Chazal
and Michel (2017) are somewhat less technical and more
oriented toward statistics; see also Ghrist (2018).

For our purposes of statistical embedding, TDA brings
in some new aspects in that topological properties are em-
phasized in the embedding. This is done to start with in
so-called persistence diagrams, which depict the persis-
tence, or lack thereof, of certain topological features as
the scale in describing a data cloud changes. In compli-
cated situations, persistence diagrams can be computed
from simplical complexes. This is a particularly interest-
ing concept since it generalizes the embedding of a point
cloud in a graph. A one-dimensional simplical complex
can be identified with a graph, whereas generalizations
allow for describing cycles and voids of the data.

To introduce the persistence diagram, recall the estima-
tor Ŝ in (13) as a union of balls B(Xi, ε) of radius ε. One
may question what happens to this set as the radius of
the balls increases. Consider, for example, a data cloud
that contains a number n of isolated points that resem-
bles a circular structure. Let each point be surrounded by
a neighborhood consisting of a ball centered at each data
point and having radius ε. Then initially and for a small
enough radius ε, the set

⋃n
i=1 B(Xi, ε) will consist of n

distinct connected sets (homology zero). But as the ra-
dius of the points increases, some of the balls will have
a nonzero intersection, and the number of connected sets
will decrease. For ε big enough, one can easily imagine
that the set

⋃n
i=1 B(Xi, ε) is large enough so that it cov-

ers the entire circular structure obtaining an annulus-like
structure of homology 1, but such that there still may ex-
ist isolated connected sets (of homology 0) apart from the
annulus. Continuing to increase the radius, one will even-
tually end up with one connected set of zero homology.

This process then involves a series of births (at ε-radius
zero n sets are born) and deaths of sets as the isolated sets
coalesce. A useful plot is the persistence diagram, which

has the time (radius) of birth on the horizontal axis and
the time (radius) of death on the vertical axis. The birth
and death of each feature is represented by a point in the
diagram. All points will be above or on the diagonal then.

We will go through the steps of this procedure in the
case of the noisy Ranunculoid structure of Figure 1(a). We
will start by considering each of the three curves, then pair
of curves and finally all three curves. The corresponding
persistence diagrams are displayed in Figure 3, and these
diagrams furnish the topological embedding signature of
the data, which is rather different from, and presents ad-
ditional information compared to, the embeddings in Fig-
ures 1 and 2.

Consider first the individual curves in Figures 3(b)–3(d)
(Figure 3(a) is identical to Figure 1(a)). Here, class 1, 2
and 3 in Figures 3(b)–3(d) represent the persistence di-
agram of the innermost to the outermost curves, respec-
tively. The gray points represent sets of homology zero
(isolated sets) and black points represent sets of homol-
ogy one, that is, one-dimensional holes. The gray column
at the left is just the time of death for all the sets around
the individual points as the radius for the individual neigh-
borhoods increase. Naturally, the column is highest for
the outermost curve in Figure 3(d), where the distances
between points are largest. The black points at the right-
hand side of the columns mark small holes that temporar-
ily arise in this process due to indents in the point spreads.
For the innermost curve, there is a black point at the far
right with a short lifetime. This is due to the opening in
this curve, which is just great enough for there to form an
annulus as the radii increase.

Next, to the diagram of the pairwise curves: The pair
(1,2) consists of the two innermost curves, and the per-
sistence diagram is displayed in Figure 3(e). The points
of curve 1 can again be found. In addition, at birth time,
there is a gray point above the gray column. This is just
due to the fact that there are two curves at the starting
point. As time (and radii) increase the two curves coa-
lesce and we have a death at the gray point above the gray
column. The three black points being born at approximate
time 6 and living for about time 6 to time 12 come from
holes that are created as curve 1 and 2 are approximating
each other. The explanation for the pair (2,3) is much the
same. In this case, it takes more time before the curves
2 an 3 coalesce, so the gray point at time zero are far-
ther up. Here, too, 3 holes are formed as the curves 2 and
3 approach each other. One hole has very short lifetime,
it is almost on the diagonal, where as the two others al-
most coincide and have far longer lifetime. This has to do
with the different levels of indention on the two curves.
Finally, for the pair (1,3), the gray point at zero is even
farther up, reflecting the increased distance between the
curves 1 and 3. Again the pattern of curve 1 is dominating
as for the pair (1,2). The indents of curve 1 are small in
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FIG. 3. Persistence diagrams for combinations of classes 1, 2 and 3.

comparison with the indents of curve 3, and this explains
that it takes longer time for holes to appear as these two
curves are approaching each other.

The diagram for the triple of curves (1,2,3) in Fig-
ure 3(h) is roughly obtained by superposition of the pat-
tern for the pairwise curves. There is a difference at birth
time zero, though. The uppermost point for the pair (1,3)

has disappeared. The explanation is obvious. The curves
1 and 2 coalesce first due to least distance between them.
Curve 3 is then coalescing with the set combined by curve

1 and 2, which has a distance from curve 3 equal to the
distance between 2 and 3, such that the second gray point
at zero correspond to the gray point at zero for the pair
(2,3).

One can also construct persistence diagrams for the
more noisy curves of Figure 2. This is shown in Figure 4.
The pattern is a bit more complex as is expected, but the
individual points can be interpreted as before. In particu-
lar, due to the more irregular patterns of the noisy curves,
the gray columns to the left extend farther up, and the birth
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FIG. 4. Persistence diagrams for combinations of classes 1, 2 and 3.

of holes of dimension 1 has an earlier birth, there are more
of them and they exhibit a somewhat more complex pat-
tern.

The idea is that this description of a point cloud in the
plane, as indicated above, may be generalized to higher
dimensions and much more complicated structures with
multiple holes and voids of increasing homology. The
number of sets of different homologies are described
by the so-called Betti numbers, β0, β1, . . . . In a non-
technical jargon, β0 is the number of connected com-

ponents (β0 = n, n being the number of isolated points
in the start of our example), β1 is the number of one-
dimensional holes, so β1 = 1 if there is only one con-
nected ring structure, and β0 = 1, β1 = 0 when the radius
is so great that there is only one connected set altogether.
The hole is one-dimensional since it suffices with a one-
dimensional curve to enclose it, whereas the inside of a
soccer ball is two-dimensional, it can be surrounded by
a two-dimensional surface, and has β0 = 1, β1 = 0 and
β2 = 1. A torus has β0 = 1, β1 = 2, β2 = 1. In Figures 3
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and 4, it is a trivial exercise to find the Betti numbers (0 or
1) for any chosen interval of time (radius) of these figures.

The extension of the persistence diagrams to more gen-
eral structures requires relatively advanced use of math-
ematical tools. We only indicate some main concepts in
Section 1 of the Supplementary Material (Tjøstheim, Jul-
lum and Løland, 2023). Section 1 of that Supplementary
Material is concluded by formulating some explicit and
open statistical problems in TDA.

There are many applications of TDA in general and
of persistence diagrams in particular. Two recent appli-
cations to cancer research are Bukkuri, Andor and Darcy
(2021) and Crawford et al. (2020), where the latter intro-
duces a variation of a persistent homology transformation
to facilitate the difficulties in integration with traditional
statistical models. In this type of cancer study, time series
are important. The use of TDA to analyze time-series data
is discussed in Ravisshanker and Chen (2019).

4.3 The Mapper

In Section 3, we have outlined a number of methods
for projecting high-dimensional data to lower dimensions,
thus making the projected data more amenable for char-
acterization such as, for example, clustering and classifi-
cation. Some of these methods strive to make the distance
between points invariant, others not. But in all cases there
is a risk of missing important topological information dur-
ing the projection operation. The Mapper algorithm sug-
gested in a seminal paper by Singh, Memoli and Carls-
son (2007) tries to handle this issue by back-projecting
the characterization in the lower-dimensional space to the
original space by considering preimages of the cluster-
ing, say, in the low-dimensional space. More precisely,
the Mapper algorithm consists of the following steps:

Consider a point cloud of data X, and let f be the map-
ping of X to a lower-dimensional space, obtained by prin-
cipal components or one of the other dimensionality re-
duction methods of Section 3. Let Y = f (X) be the set of
data points in the lower-dimensional space, often assumed
to be R

m or even R
1. Then:

1. Cover the range of values Y = f (X) by a collection
U = {U1, . . . ,US} of intervals, or possibly more general
sets, which overlap.

2. Apply a clustering algorithm to each of the preim-
ages f −1(Us), s = 1, . . . , S. Even though Us may be con-
nected, f −1(Us) of course may not be connected due
to the potential complicated topological relationships in
the original space. This defines a pullback cover C =
{C1,1, . . . ,C1,k1, . . . ,CS,1, . . . ,CS,kS

} of the point cloud
X, where Cs,k denotes the kth cluster of f −1(Us).

3. Each node vs,k of the Mapper corresponds to one
element Cs,k , and two nodes vs,k and vs′,k′ are connected
if and only if Cs,k ∩ Cs′,k′ is not empty.

The algorithm results in a graph (or more generally a
simplical complex). The essential design problems con-
sist in the choice of the transformation f and the cover-
ing U1, . . . ,US in the lower-dimensional space. Unfortu-
nately, according to Chazal and Michel (2021), Mapper is
quite sensitive to the choice of covering, the number of
covering sets and the overlap between them, making the
method potentially unstable. A classical strategy consists
in exploring some range of design parameters, and select-
ing the ones that turn out to provide the most informative
output from the user’s perspective.

There is a statistical analysis including parameter selec-
tion in Carrière, Michel and Oudot (2018). They demon-
strate aspects of statistical convergence and ensuing opti-
mality problems. They also derive confidence regions of
topological features such as loops and flares.

The Mapper algorithm has found many applications, es-
pecially for its capability of detecting loops and flares in
the mapping of the original data space. A recent example
of applications to cell description is given in Carrière and
Rabadán (2020).

5. EMBEDDING OF NETWORKS

In Sections 3.4 and 3.5, graphs (or networks) were used
as a tool in embedding a point cloud in R

p , making it
possible among other things to do cluster analysis involv-
ing nonconvex clusters. In the present section, the starting
point is a network or collection of networks, and the task
is to embed the network in an Euclidean space R

m or to
map it to a manifold. This is used to obtain a vector rep-
resentation of each node of the network.

Why is it important to be able to embed a network in
such a way? The main reason is simply that for many pur-
poses it is easier to work with a set of n vectors than with a
network consisting of n nodes. One has standard methods
for dealing with vectors. For example, one can do cluster-
ing of vectors, which in a social network could correspond
to finding and grouping communities in the network. And
one can also compare and classify networks by looking at
their embedded sets of n-dimensional vectors.

With the increasing use of the internet and big data,
the analysis of large networks is becoming more and
more important. There is a very wide field of applica-
tions ranging over such diverse areas as, for example,
finance, medicine and sociology, including criminal net-
works. A broad overview can be found in the recent book
by Newman (2020). A fine detailed survey is Cui et al.
(2019).

With ultra high dimension and very large data sets,
there is a need for fast methods. With the recent technique
of Skip-Gram, described in some detail in Section 5.3 and
in Section 2 in the Supplementary Material (Tjøstheim,
Jullum and Løland, 2023), one is able to handle networks
with millions of nodes and billions of edges such that each
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node is represented by a vector of dimension 500–600,
say. On such vectors, one can use standard discrimina-
tion and clustering. One may also do further embedding
to lower-dimensional vectors, as described in Section 6,
to visualize data of very high dimension.

In our survey of network embedding methods, we will
start with spectral graph methods in Section 5.2 after a
brief introduction on characterization of graphs in Sec-
tion 5.1. The spectral method requires solving an eigen-
value problem, and this puts a limitation on the number of
nodes and edges. This restriction is to a large degree by-
passed in neural network based methods, in particular in
the Skip-Gram algorithm. This algorithm was originally
introduced in natural language analysis, which has inde-
pendent interest in that the words in a language text can
be embedded in a vector in R

m reflecting not only the
word count in a text but also the syntax of the text. A lan-
guage text is not a network and, therefore, some details of
the embedding analysis of a language text are covered in
Section 2 of the Supplementary Material. Ideas and meth-
ods developed in such a framework have proved vitally
important, however, for fast and efficient embedding of
networks as is demonstrated in Section 5.3. That section
is chiefly concerned with symmetric undirected networks,
but briefly mentioning directed networks, heterogeneous
networks and dynamic networks, where there are many
open statistical and data processing problems, in the en-
suing sections.

There are several issues of statistical interest related
to embedding of networks. One may therefore think that
there is a potential synergy effect that both the statistics
and machine learning community could benefit from. We
will try to make this more clear in the sequel. One issue
is the lack of statistical modeling and inference in the al-
gorithmic machine learning industry. It is important to re-
alize that there now exists a growing statistical literature
that is in process of being integrated in algorithms on find-
ing communities in networks. We refer to Sections 5.2.4
and 5.7.1. See also the three keypoints formulated in the
concluding remarks in Section 7.

5.1 A Few Elementary Concepts of Graph Theory and
Matrix Representations

We have already introduced some elementary graph
concepts in Sections 3.4 and 3.5. In this brief introduc-
tory section, we supplement these to more fully explain
the spectral based clustering algorithms for networks.

We consider a graph G = (V ,E), where V and E are
the sets of nodes and edges, respectively. The graph is
supposed to be undirected, which means that an edge goes
in both directions between two neighboring nodes. Let
n = |V | be the number of nodes in (V ,E). Then the graph
can be represented by a n × n matrix M, such that an
element Mij of this matrix represents some property of

the pair of nodes vi and vj . When V is large, this matrix
may be huge. Later, representation matrices of dimension
n × m will be introduced where m � n. Diagonal ele-
ments Mii encode information of the node vi only, such
as the degree of vi (number of edges emanating from vi or
more generally as in equation (7) for a weighted graph).
A simple example of such a matrix is the adjacency matrix
A, which was mentioned in Section 3.5.

An adjacency matrix A for an undirected graph is sym-
metric with real eigenvalues, both negative and positive.
In many applications, it is useful to have a nonnega-
tive definite matrix. One example of such a matrix is the
Laplace matrix, a version of which was introduced in Sec-
tion 3.5 for a general weighted undirected graph. It is
given by

(14) L = D − A,

where A is the adjacency matrix and D = diag(di) is the
diagonal matrix having the degree of the nodes along the
diagonal.

The normalized Laplacian LN is defined by

LN,ij =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j,

−1/
√

didj if i and j are adjacent,

0 otherwise.

This matrix can also be written LN = D−1/2LD−1/2. It
is nonnegative definite and it has all its eigenvalues 0 ≤
λ ≤ 2.

5.2 Spectral Embedding and Graph Clustering

A basic task in network clustering is community struc-
ture detection. It is perhaps best thought of as a data tech-
nique used to throw light on the structure of large-scale
network data sets, such as social networks, web data net-
works or biochemical networks. It is normally assumed
that the network of interest divides naturally into sub-
groups, and the task is to find those groups.

For the purpose of community grouping and division,
a criterion is required that can measure both the internal
structure within each group, where the goal is to maxi-
mize the dependence between members of a group, but
also such that the dependence between each group is min-
imized. There are two main methods for doing this, either
by minimizing the so-called cut between the groups, the
mincut problem or by maximizing the modularity. Both
are discussed below using network spectral embedding.

5.2.1 Minimizing the cut functional. A useful tutorial
on spectral clustering is given by von Luxburg (2007).
A more recent alternative account is given in Zheng
(2016).

Given a graph G = (V ,E) with adjacency matrix A,
we would like to find a partition of V in groups V1, . . . , Vk
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such that the number of edges between each group is min-
imized. This leads to the mincut problem.

Let W(Vi,Vj )
.= 1

2
∑

m∈Vi,l∈Vj
wml , where wml is the

weight for the edge between the nodes vm and vl . In the
unweighted situation, wml is 1 if there is an edge between
vm and vl and 0 if not. Let V̄i be the complement of Vi .
The mincut approach to clustering is simply defined for a
given k by choosing the partition V1, . . . , Vk , which min-
imizes the normalized cutsize

NCut(V1, . . . , Vk)
.= 1

2

k∑
i=1

W(Vi, V̄i)

vol(Vi)
=

k∑
i=1

cut(Vi, V̄i)

vol(Vi)
,

where vol(Vi) = ∑
vl∈Vi

dl , dl being the weighted degree
of vl . A similar criterion is the RatioCut criterion (Wei
and Cheng, 1989).

The normalized Laplace matrix can be written as LN =
D−1/2LD−1/2. Let H be the n×m matrix whose columns
are the m eigenvectors corresponding to the m small-
est (nonzero) eigenvalues of LN . The m-dimensional row
vectors of H then constitute an embedding of the nodes of
the graph minimizing the normalized cut-functional of the
graph. These embedding vectors are next used as a point
of departure for clustering and classification of nodes.

5.2.2 Maximizing the modularity. Modularity is an
alternative concept in the use of spectral methods in clus-
tering. Modularity was introduced by the highly cited pa-
pers of Girvan and Newman (2002) and Newman and Gir-
van (2004), and after that has been further developed as
in Newman (2006). See also Bickel and Chen (2009) for
an alternative using a nonparametric point of view.

It was seen in the previous subsection that the principle
underlying the cut-size algorithms is that a good division
of a network is one in which there are few edges between
communities. Newman (2006) states that this is not neces-
sarily what one should look for. He argues that a good di-
vision is one in which there are fewer than expected edges
between communities.

This idea then is quantified using the measure of mod-
ularity. Assume first that there are two potential classes.
Again, we suppose that the network contains n = |V |
nodes, and we introduce the vector s, whose ith compo-
nent is given by si = 1 if node vi belongs to group 1 and
si = −1 if it belongs to group 2. The edge between nodes
vi and vj is characterized by the adjacency matrix A. The
element Aij then represents the “number of edges” be-
tween vi and vj . The expected number of edges between
vi and vj if edges are placed at random is didj /2d , where
di and dj are the degrees of the nodes and d = 1

2
∑

i di

(undirected network). The modularity is then defined by

(15) Q = 1

4d

∑
ij

(
Aij − didj

2d

)
sisj = 1

4d
sT Bs,

where the matrix B is defined by

Bij = Aij − didj

2d
.

This is easily generalized to the case of k classes, and the
modularity is maximized by computing the eigenvectors
of the B matrix. Corresponding to H, let S be the n × m

matrix whose columns are the eigenvectors corresponding
to the top m eigenvalues of B. The n m-dimensional row
vectors of S then constitute an embedding of the n nodes
of the network maximizing the modularity.

5.2.3 The Louvain method for community detection.
The so-called Louvain method for community detection
based on modularity was introduced in a paper by Blondel
et al. (2008). They start with a network with n nodes,
and where each node defines a community. Then one
goes successively through the nodes of the net and for
each node vi , with neighbors vj one investigates the gain
in modularity if vi is removed from its community and
placed in the community of vj . The node vi is then placed
in the community for which this gain is maximum (in case
of a tie, a breaking rule is used). An updating formula for
the change in the modularity Q is given in Blondel et al.
(2008). This is continued until the whole graph has been
covered. In the next round, the procedure in the first round
is repeated, but this time with the communities formed in
the first step as entities. This is continued until there is no
increase in Q.

There is no eigenvalue problem that needs to be solved
in this algorithm. This makes it possible to apply the Lou-
vain algorithm for substantially larger networks. One ex-
ample that the authors refer to is a mobile phone company
with a network composed of 2.6 million users.

5.2.4 Statistical modeling, SBMs and finding commu-
nities. The methods in Sections 5.2.1–5.2.3 all belong to
the algorithmic approach. An intuitively reasonable ob-
ject function is maximized or minimized to find commu-
nities in a network. This is in line with the most popular
approach to statistical embedding, where as such no sta-
tistical model is involved. There are no parameters that
should be estimated, and in terms of which the fit of the
model can be assessed.

These two different approaches, the algorithmic ver-
sus the statistical modeling one, have recently been dis-
cussed in several papers. The most recent one seems to
be Peixito (2021), who is staunchly critical to the algo-
rithmic approach in general and to the methods of finding
communities in Sections 5.2.1–5.2.3 in particular. The au-
thor demonstrates that maximizing the modularity Q of
Section 5.2.2 could lead to falsely finding communities in
a completely random environment. On the other hand, he
gives examples where in given situations use of Q leads
to underestimation of the number of communities. This
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may be part of a general problem of some machine learn-
ing algorithms, at least it is something that deserves closer
attention, as indicated in the third keypoint of Section 7.

Peixoto argues for parametric statistical models from
which networks can be generated, and where the struc-
ture of the net depends on the type of statistical models
used and on the values of the parameters of these mod-
els. The generated model structures can be compared to
real life networks, and parameters may be estimated by
seeking to fit a generated model structure to the real life
data. The most used statistical model is probably the so-
called stochastic block model, SBM, where a block may
be thought of as a community. The history of these mod-
els goes back at least to Holland, Laskey and Leinhardt
(1983). Another early publication for a slightly more gen-
eral model is Hoff, Raftery and Handcock (2002). There
are several papers on the theoretical aspects of the SBM
that will be briefly mentioned in Section 5.7.1. A review
paper is Lee and Wilkinson (2019). Here, we will base
ourselves on Karrer and Newman (2011) and Newman
and Reinert (2016), since they are directly and explicitly
related to maximizing modularity Q, Newman being the
main originator of the modularity principle.

In the simplest undirected stochastic block model, each
of the n nodes is assigned to one of k blocks (communi-
ties), and undirected edges are placed independently be-
tween node pairs with probabilities that are a function
only of the block membership of the nodes. If we denote
by bi the block to which node i belongs, then one can
define a k × k matrix of probabilities such that the matrix
element pvi,vj

is the probability of an edge between nodes
i and j . These probabilities are the k2 parameters of the
model, and there are several ways of estimating them for
a given real data network.

Unfortunately, however, this simple block model does
not work well for many real world networks, and tends
to give bad results in obtaining plausible communities.
There are generalizations of the simple SBM model, but
they may lead to models that are far more difficult to es-
timate. One relatively simple generalization is the degree
corrected stochastic block model (dcSBM) that seems to
work much better on real life networks. The dcSBM was
suggested by Karrer and Newman (2011). It allows for
heterogeneity in the number of degrees for the nodes,
which is a phenomenon that is often observed in practice,
whereas the simple SBM results in a model where each
node has the same expected degree, which in many cases
is clearly unrealistic. Karrer and Newman also demon-
strate that in a certain approximative sense the dcSBM
can be related to the modularity function Q from equa-
tion (15).

5.3 Embedding a Network Using Skip-Gram

For large networks, the cut-size spectral clustering
method and the modular method (possibly with the ex-

ception of the Louvain method) run into problems be-
cause it is costly to solve eigenvalue problems for the
high dimensions that may occur in network embedding.
These problems are to a large degree alleviated in a neural
net based Skip-Gram procedure. This procedure was first
developed in word embedding in a language text (from
this the nomenclature “Skip-Gram”). Here, the eigenvalue
problem is eliminated altogether, and the neural net train-
ing is speeded up using so-called negative sampling or
hierarchical processing. See also Section 2 in the Supple-
mentary Material (Tjøstheim, Jullum and Løland, 2023),
which contains a brief account of natural language em-
bedding, and may be of some independent interest.

A concept of neighborhood is needed to extend word
processing to networks where words are replaced by
nodes and the vocabulary with the network itself. In nat-
ural language processing, defining a neighborhood of a
word in a text is not difficult: simply taking n1 and n2,
ni ≥ 0 context words in front and after the word, re-
spectively. Before embarking on the neighborhood prob-
lem, partly to define notation, let us formally write up
the analog of the Skip-Gram model, presented in some
detail in the language analysis in Section 2 of the Sup-
plementary Material, for a network. The notation N(v)

is used for the neighborhood of a node v ∈ V in a net-
work G = (E,V ). Neighborhoods are more precisely de-
fined in Section 5.3.2. The analysis to be presented next
applies mainly to the static undirected case. Extensions to
directed, heterogeneous and dynamic networks are briefly
discussed in separate subsections.

We let f be the mapping from V to the embedding fea-
ture space R

m. The goal is to associate each node v in V

with a feature vector f (v) in R
m. When representing the

whole network in this way, we obtain an n × m dimen-
sional matrix with n = |V |.

5.3.1 The Skip-Gram. We proceed to formulate the
Skip-Gram architecture for an undirected symmetric net-
work. One seeks to optimize an objective function in find-
ing a representation f (v) such that the conditional prob-
ability for obtaining individually the elements in N(v),
given an input node v, is maximized; that is, find f such
that

(16)
∑
v∈V

logP
(
N(v)|f (v)

)

is maximized.
The maximization is done by training a one-layer hid-

den neural network, which has as possible inputs n vec-
tors, one for each node in the network. A fixed input vec-
tor has as desired output a probability distribution on the
nodes. It should be concentrated as well as possible to the
neighbors (suitably defined) of the input node. The idea
is to train the neural net through its hidden layer so that
this is achieved to the highest possible degree. Only linear
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transformations are used from the input layer to the hid-
den layer and essentially also from the hidden layer to the
output, although a logistic-type transformation is used to
transform the outputs to probabilities. A few basic facts
of neural networks are given in Section 2.1 of the Supple-
mentary Material (Tjøstheim, Jullum and Løland, 2023).

The training is done successively by going through this
process for each input node several times and is stopped
when the deviation from the obtained probability distri-
bution on the outputs is close enough to the ideal de-
sired one, which is completely concentrated on the sought
neighboring nodes. At each step of this procedure, each
node has an input vector representation and an output vec-
tor representation. It is the output vector representation
that is of interest since it describes the relation between
a node and its neighbors. This training process strives to
maximize the function in (16).

To make this optimization problem tractable, the fol-
lowing two assumptions are made (not always made ex-
plicitly in the language processing papers):

(1) Conditional independence: The conditional likeli-
hood is factorized as

(17) p
(
N(v)|f (v)

) = ∏
ni∈N(v)

P
(
ni |f (v)

)
.

(2) Symmetry in feature space and softmax: A source
node and a neighborhood node have a symmetric effect on
each other in the embedding feature space. Accordingly,
the conditional likelihood for every source-neighborhood
pair is modeled as a softmax unit, parameterized by a dot
product of their features

(18) P
(
ni |f (v)

) = exp(f (ni) · f (v))∑
u∈V exp(f (u) · f (v))

.

This is nothing but a suitable parametrization of the multi-
nomial logistic regression model, but in the data science
literature “softmax unit” is preferred. Formula (18) may
be compared to the development in Section 2.4 in the
Supplementary Material (Tjøstheim, Jullum and Løland,
2023).

With the above assumptions and taking logarithms in
(18), the objective function in equation (16) simplifies to

max
f

∑
v∈V

[
− log

(∑
u∈V

exp
(
f (v) · f (u)

))

+ ∑
ni∈N(v)

f (ni) · f (v)

]
.

(19)

In the training of the neural net, one avoids solving a
high-dimensional eigenvalue problem, but there is an ob-
vious computational issue involved. As the size of the net-
work increases with n, the neural net with the associated
input and output vectors representations becomes heavy

to update. For each step of the training, in principle, all
of these representations have to be updated. The updating
of the node input vectors is cheap, but learning the output
vectors, which are the vectors of interest, is expensive.
For each training instance, one has to iterate through ev-
ery node of the network (cf. the summation over u in (18)
and (19)), compute the output and the prediction error and
finally use the prediction error in a gradient descent algo-
rithm to find the new output vector representation.

The idea of negative sampling, first introduced in
Mikolov et al. (2013) in text analysis, makes the training
process amenable by not sampling over the entire network
for each update of a node, but rather a small sample of
nodes. Obviously, the output nodes in the neighborhood
of a given node should be included in the update sample,
that is, the last sum of (19). They represent the ground
truth and are termed positive samples. In addition, a small
number k of nodes (noise or negative samples) should be
updated. Mikolov et al. (2013) suggest that k = 5 − 20
are useful for small training sets, whereas for large train-
ing sets k = 2 − 5 may be sufficient; see Section 2.6 of
the Supplementary Material for more details (Tjøstheim,
Jullum and Løland, 2023). The sampling is done via a
probability mechanism where each word (node) is sam-
pled according to its frequency in the text. It will be seen
below how this can be done in the network case. In ad-
dition, Mikolov et al. (2013) recommends, from empiri-
cal experience, that in the further analysis each frequency
should be raised to the power of 3/4 (cf. again Section 2.6
of the Supplementary Material). This seems also to have
been adopted in the network version of negative sampling.
Clearly, a more thorough statistical analysis, also includ-
ing the choice of k, would be of interest. We refer again
to the first of the three keypoints of Section 7.

We will return to the question of negative sampling in
the next subsection, where a sampling strategy S is intro-
duced for creating neighborhoods of a node v.

5.3.2 Neighborhood sampling strategies. Various au-
thors have suggested different sampling strategies of the
nodes of a network. We will go through three main strate-
gies, which seem to be representative of this field as of
the last 5 years. All of these contain parameters to be cho-
sen for which, to our knowledge, an optimality theory is
lacking.

Perozzi, Al-Rfou and Skiena (2014) device a sampling
strategy they call “DeepWalk”. Consider a node v, and
denote by wvu the weight of its (undirected) edge with
another node u. Let the degree variable be dv = ∑

u wvu.
Then start a random walk from v by letting it choose the
one-step neighbor u with probability P(u|v) = wuv/dv .
Next, repeat this for the node u, and so on until L steps,
say, have been obtained. The walk may return to v for one
or more of its steps. This procedure is now repeated γ

times obtaining γ random walks starting in v. These may
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be compared to text segments in natural language process-
ing. Analog to a moving window in a language text we
now let a window of size 2K +1, where 2K +1 ≤ L, glide
along the random walk paths. For each window, there is
a center node numbered u′, K ≤ u′ ≤ L − K and we de-
fine a neighborhood NS(u′) and K nodes prior to u′ and
K nodes after u′ in the considered random walk path. For
each such configuration, we apply the Skip-Gram proce-
dure (16)–(19). In this way, for each node v we generate
γ × (L − 2K) segments of nodes. Note that this creation
of segments in paths of random walks can be carried out
before the optimization process takes place. When applied
to all of the nodes of the network it results in a collec-
tion of n × γ × (L − 2K) segments of nodes that corre-
spond to windows of words in a language text. This sets
up a frequency distribution over the nodes corresponding
to the frequency distribution of words in the vocabulary
in a text. Negative sampling of nodes can then be applied
to this frequency distribution of nodes.

The LINE (Large-scale Information Network Embed-
ding) was introduced by Tang et al. (2015). They use a
slightly different optimization criterion than (17). Some-
what similar to Grover and Leskovec (2016), LINE intro-
duces the concepts of first- and second-order proximities.

Qiu et al. (2018) and Qiu et al. (2019) obtain a uni-
fying view of the DeepWalk and LINE among other al-
gorithms. Recent activity in deep learning and recursive
neural networks should also be mentioned (Young et al.,
2018). Software packages are available for all of the al-
gorithms mentioned in this section, and a number of real
data examples are given in the publications cited.

5.4 Directed Network

In many applications of networks, one deals with a di-
rected network, for example, in causality networks. This
is a network where the weight on edges between nodes vi

and vj may be different, so that wij �= wji , and one may
even have wij > 0 but wji = 0. Rohe, Qin and Yu (2016)
have looked at this from a spectral graph point of view.
Directed graphs have also been attempted incorporated in
the Skip-Gram procedure; see, for example, Zhou et al.
(2017, page 2944). The undirected sampling strategy de-
scribed in Section 5.3.2 can again essentially be used. To
illustrate, let wij be the weight of the edge in a transi-
tion from vi to vj . In a money laundering investigation,
for example, where the nodes may be bank accounts, wij

may be proportional to the number of transactions from
account i to account j . Similarly, one may define wji . The
probability of going from node vi to vj can then be given
as pij = wij/di , where di = ∑

j∈NS(i) wij and NS(i) is
the first-order neighborhood of vi .

5.5 Heterogeneous Network Representation

Heterogeneous here refers to a situation where there are
different types of nodes in a network, and there may be

different types of edges. If these are treated with homo-
geneous techniques neglecting the heterogeneity, inferior
results may result.

Two papers will be briefly mentioned, one is an ex-
tension of the LINE approach, the other is an extension
of the DeepWalk methodology. In these two papers, the
Skip-Gram algorithm is applied on so-called metapaths,
paths consisting of a sequence of relations defined be-
tween different node types. The introduction of metapaths
to heterogeneous graphs came before the Skip-Gram pro-
cedure; see Sun et al. (2012).

It is natural also to mention the extension of LINE
found in the PTE (Predictive Text Embedding) of Tang,
Qu and Mei (2015). PTE deals with a text network embed-
ding, but the method is applicable to a general network.

Dong, Chawla and Swami (2017) introduce a form
of random walk sampling for heterogeneous networks,
which is analogous to or extends the sampling procedures
in Perozzi, Al-Rfou and Skiena (2014) and Grover and
Leskovec (2016). Skip-Gram is combined with the meta-
path sampling as discussed by Sun et al. (2012).

5.6 Embedding of Dynamic Networks

Most of the work on embedding of networks has been
done on static networks. There is no time dimension in-
volved to trace the dynamic evolution of the network. In
many situations, this is of course not very realistic. Con-
sider, for example, a bank network. New accounts are
opened, other accounts are closed. New types of trans-
actions between accounts are appearing, others are be-
coming old and less relevant. Or in more general network
language, new nodes are coming into the network, others
are removed. New edges are created, others are discarded.
Weights between edges may easily change in time. In
a heterogeneous network, new types of nodes may en-
ter the system, others may leave. An early empirical in-
vestigation of changes in social networks is contained in
Kossinets and Watts (2006); see also Greene and Cun-
ningham (2011).

An obvious brute force solution is to use a moving win-
dow and then do an embedding, and possible clustering in
each window. But clearly such a procedure is time con-
suming and nonefficient if there are many (overlapping)
windows. One would like to have an updating algorithm
that can keep information in the previous window and
combine it with new information in the new window. To
our knowledge, the literature here is quite limited.

There is an attempt to generalize the entire Skip-Gram
methodology to a dynamic framework. This can be seen
in Du et al. (2018). They utilize that a network may not
change much during a short time in dynamic situations,
thus the embedding spaces should not change too much
either. A related paper venturing into heterogeneous net-
works meta paths is Bian et al. (2019). Zhu et al. (2017)
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takes a more statistical modeling point of view on dy-
namic networks. The paper is briefly reviewed in the next
subsection. Clearly, the theme of dynamic networks is an
open and challenging field for data scientists and statisti-
cians. Much late work is summed up, mostly from a ma-
chine learning point of view in Kazemi et al. (2020). Some
recent trends in embedding of time series and dynamic
networks are reviewed in Tjøstheim, Jullum and Løland
(2023), with a number of additional recent references.

5.7 Network Embedding: Data Science and Machine
Learning Versus Statistical Modeling

An overwhelming part of the literature on network em-
bedding can be found in the machine learning journals and
in proceedings on data and computational science. The
emphasis has been on deriving methods that “work”, that
is, can be used in practical applications. Certain parts of
some of the methods used are quite ad hoc such as the
argument in Mikolov et al. (2013) where from empirical
evidence the word count is raised to 3/4 power in the dis-
tribution forming the basis of the negative sampling. This
has been followed up in later literature and does seem to
work well. But it is not clear why. Moreover, there are
few quantitative expressions of uncertainty or on statisti-
cal properties of the obtained results.

Many of the algorithms and methods discussed in this
paper contain input parameters or hyperparameters, in-
cluding the choice of the dimension of the embedding
space. An important issue in both theory and practice is
the setting of these parameters. The problem has to be
treated with care to avoid instability in the embedded
structure. The problem is briefly mentioned in Section 4.3,
but the problem is relevant also in a more general context.

Broadly speaking, statistical methods use theoretically
derived methods to choose hyperparameters necessary to
fully specify a method, while the typical machine learning
approach is to rely on hyperparameter optimization or so-
called tuning. The former may require assumptions that
are too strong or cannot be checked in practice. The latter
typically requires additional data or retraining of models
based on randomly dividing the data into subsets (cross-
validation), which is computationally costly and comes
with an uncertainty component due to the randomness in
the data splitting. Many machine learning practitioners
may enforce a rather basic and ad hoc trial and error opti-
mization approach. Still, methods like Bayesian optimiza-
tion (Shahriari et al., 2015) have gained significant mo-
mentum in the recent years. Bayesian optimization aims
at solving the optimization problem using as few evalua-
tions as possible. While the method uses statistical theory
through its reliance on Gaussian processes, the hyperpa-
rameter selection problem is still based on optimization
and possesses the aforementioned drawbacks. We think
the machine learning methods could benefit from theoret-
ically derived hyperparameter choices. There have been

some attempts at choosing parameters for machine learn-
ing methods through the statistical information criterion
approach (Claeskens, Croux and Van Kerckhoven, 2008,
Lunde, Kleppe and Skaug, 2020), but it does not yet seem
to have found its place in machine learning. The theoret-
ical difficulty of deriving such criteria due to the lack of
proper likelihoods in the training of the machine learning
methods is an obvious obstacle. To avoid this, it might be
possible to go in the direction of the generalized informa-
tion criterion (GIC) (Konishi and Kitagawa, 2008), which
does not require a likelihood, but rather relies on func-
tionals of the data generating distribution and their as-
sociated influence functions. In any case, going forward,
we believe it is worth looking in the direction of theoreti-
cally derived selection procedures for the machine learn-
ing community, and have as such identified this in our list
of keypoints in Section 7.

5.7.1 Stochastic block modeling. The issues mentioned
above appear to lead to a gap between data/computat-
ional science using algorithmic approaches and more tra-
ditional (and modern) statistical thinking. There is a clear
need for results bridging this gap, as argued in the sec-
ond keypoint in Section 7. In this subsection, we focus on
stochastic block modeling, but it should be realized that
other types of statistical models have been proposed; see
Crane and Dempsey (2015).

In particular, Peter Bickel and his collaborators have
taken up various problems of asymptotic theory for
stochastic block models and related models. This includes
hypothesis testing in Bickel and Sarkar (2016), asymp-
totic normality in Bickel et al. (2013), nonparametrics in
Bickel and Chen (2009). Works more specifically directed
towards asymptotics of spectral clustering can be found
in Rohe, Chatterjee and Yu (2011) and in Lei and Rinaldo
(2015). Most of these works require a delicate asymptotic
balancing between the number of nodes, the degree of the
nodes and the number of communities. An example of a
heterogeneous model, which is analyzed rigorously from
a statistical point of view, is Zhang and Chen (2020). For
instance, the proposed modularity function is shown to
be consistent in a heterogeneous stochastic block model
framework. It is related to the Bickel and Chen (2009) pa-
per. See also Decelle et al. (2011) who bring in algorith-
mic applications of block models using cavity methods to
describe phase transitions in inference and learning.

A very important problem both in practice and in theory
is the problem of determining the number of communities
in community detection. In earlier literature, this number
was actually taken to be known. In statistical likelihood-
based models, one has attempted to find this number by
letting it be an unknown parameter in the likelihood and
then do likelihood integration. Wang and Bickel (2017)
look at the problem from an underestimation and overes-
timation point of view. Newman and Reinert (2016) pro-
pose replacing the original Bernoulli-type likelihood by
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an approximated Poisson likelihood, which is easier to
handle computationally. Peixito (2021) discusses AIC and
BIC-type approaches to this problem.

There has been made progress in the numerical estima-
tion of the parameters in stochastic block-type models.
Typically, a Bayesian approach has been used with ex-
tensive use of Markov Chain Monte Carlo; see, for exam-
ple, Peixoto (2019). But we think it is fair to say that the
dimension of the networks attacked by stochastic block
modeling has been considerably less than the most gen-
eral used algorithmic Skip-Gram models of Section 5.3.1.

5.7.2 Dynamic graphs and time-series modeling in net-
works. The discussion of an algorithmic approach versus
stochastic modeling is also taken up in Tjøstheim, Jul-
lum and Løland (2023), treating recent trends in embed-
ding of time series and dynamic networks. Examples of an
algorithmic, but with some statistical modeling aspects,
are given in Lim and Zohren (2021) and Salinas et al.
(2020), both involving deep learning networks and time
series. There are also several papers with rigorous asymp-
totic analysis of networks and autoregressive models (Zhu
et al., 2017, Zhu and Pan, 2020). Given such a framework,
conditions for stationarity are obtained, and least squares
estimates of parameters are derived and their asymptotic
distribution found.

There are a number of differences between the net-
work vector autoregression modeled in these publications
and the dynamic network embeddings mentioned in Sec-
tion 5.6. First of all, Zhu et al. (2017) treat the dynamics
of the nodes themselves and not of an embedding. Even
if the autoregressive model does introduce some (station-
ary) dynamics in time, the parameters are static; that is, no
new nodes are allowed, and the relationship between them
is also static as modeled by a matrix A = {aij }. From this
point of view, as the authors are fully aware of, the model
is not realistic for the dynamics that takes place in prac-
tice for many networks. On the other hand, the introduc-
tion of a stochastic model that can be analyzed by tradi-
tional methods of inference is to be lauded. A worthwhile
next step is to try to combine more realistic models with a
stochastic structure, possibly regime-type models for the
parameters, that is amenable to statistical inference. An
attempt in this direction is made in Ludkin, Eckley and
Neal (2018) in the context of stochastic block models.

For some very recent contributions to network autore-
gression, see Armillotta, Fokianos and Krikidis (2022)
and references therein.

6. EMBEDDING IN 2 OR 3 DIMENSIONS AND
VISUALIZATION

Visualization is an important part of data analysis.
The problem can be stated as finding a good 2- or 3-
dimensional representation of high-dimensional data and

often with a large number of samples. Principal compo-
nent analysis offers one possibility where the data are pro-
jected on the 2 or 3 first principal components. Although
very useful, since it is linear and projects on a hyperplane,
it generally fails to give a good characterization in cases
where the data are concentrated on a nonlinear manifold
which is a subset of Rp .

It is appropriate to conclude this survey on embedding
by the topic of visualization, where in principle any of the
treated methods in this survey can be used by choosing the
embedding dimension m to be 2. However, we have cho-
sen to concentrate on three methods that are powerful and
much used, and which are based on the main ideas in Sec-
tions 3, 4 and 5, respectively. The t-SNE algorithm was
developed by van der Maaten and Hinton (2008) and van
der Maaten (2014). It is based on ideas handling the con-
nection between a high-dimensional x-scale and a low-
dimensional y-scale, which are inherent already in multi-
dimensional scaling. But unlike most earlier attempts, t-
SNE is based on comparisons of probability distributions
on the x and y-scale, which seems much more sensible in
a nonlinear problem than applying moments and covari-
ances.

Tang et al. (2016) introduced LargeVis, which is based
on techniques reviewed in Section 5, especially the Skip-
Gram procedure treated in Section 5.3. Finally, McInnes,
Healy and Melville (2018) use methods from topological
data analysis akin to ideas in Section 4 to derive their algo-
rithm UMAP. Illustrations of the use of the three methods
are given in Section 6.5.

6.1 t -SNE

SNE is an acronym for Stochastic Neighbor Embed-
ding. That embedding and visualization technique was in-
troduced by Hinton and Roweis (2002). The t in t-SNE
refers to further developments in van der Maaten and Hin-
ton (2008) using a t-distribution approximation on the y-
scale.

Starting with SNE, the similarities between the points
on the x-scale and y-scale are sought expressed in terms
of pairwise Gaussian approximations. On the x-scale,
high- dimensional Euclidean distances are expressed in
conditional probabilities. The similarity of a data point Xi

to a data point Xj is expressed as a Gaussian conditional
probability pj |i such that for pairs of nearby data points,
pj |i would be relatively high, whereas for widely sepa-
rated points, pj |i could be infinitesimally small. The es-
sential idea is to preserve the internal structure of the high-
dimensional data by keeping similar data points close and
dissimilar data points far apart, in the low-dimensional
space. Mathematically, pj |i is given by

(20)

pj |i = pj |i (xj |xi) = exp(−‖xj − xi‖2/2σ 2
i )∑

k �=i exp(−‖xk − xi‖2/2σ 2
i )

,
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where σ 2
i is the variance of the Gaussian that is centered

on the data point xi . The parameter σi is chosen so that
the probability distribution Pi , induced by pj |i for all j -
s different from i, has a perplexity specified by the user.
Here, the perplexity of Pi is given by

Perpi = 2−∑
j pj |i log2 pj |i .

See Hinton and Roweis (2002) for more details.
The similarities on the x-scale is sought mapped into

corresponding similarities in the low-dimensional y-scale
by modeling the conditional probabilities by

qj |i = exp(−‖yj − yi‖2)∑
k �=i exp(−‖yk − yi‖2)

.

The coordinates Yi of a data point Xi, i = 1, . . . , n are
then sought determined by minimizing the Kullback–
Leibler distance (or cross entropy) between the pj |i and
qj |i , that is, by minimizing the cost function

C = ∑
i

KL(Pi ‖ Qi) = ∑
i,j

pj |i log
pj |i
qj |i

.

The minimization of the cost function with respect to the
y-coordinates can be done by using a gradient descent
method, and the y-s are initialized by random, Gaussian
values.

The SNE algorithm is hampered by a cost function,
which is quite difficult to optimize in practice, and there
is a so-called “crowding” problem in the sense that far
apart points on the x-scale may be mapped in such a way
that the joint probability qij may be even smaller than pij .
These problems are attacked in t-SNE by symmetrization,
modeling joint probabilities pij and qij and by using a
t-distribution as an approximation at the y-scale having
points in the tails mapped such that qij is larger than pij

to avoid the crowding effect. This trick is also present for
other local techniques for multidimensional scaling.

To avoid problems that may be caused by outliers on
the x-scale, the “joint probabilities” on the x-scale are in
fact computed as pij = (pi|j + pj |i )/2n, which ensures∑

j pij > 1/2n for all data points Xi , such that each data
point makes a significant contribution to the cost function.
Further, on the y-scale a t-distribution structure of one
degree of freedom is used,

qij = (1 + ‖yi − yj‖2)−1∑
k �=(1 + ‖yk − y‖2)−1 ,

where it should be noted that a double sum is now used in
the denominator. The cost function is given by

C = ∑
i,j

pij log
pij

qij

.

The details of the optimization can again be found in
van der Maaten and Hinton (2008). In that paper, there

is also a series of experiments comparing t-SNE with the
Sammon mapping of MDS and the ISOMAP and LLE,
where the t-SNE does extremely well.

The t-SNE algorithm is speeded up in the paper by van
der Maaten (2014) by not going over all possible pairs
(xi, xj ) but only essentially over nearest neighbors.

6.2 LargeVis

Tang et al. (2016) propose a new algorithm for visual-
ization, LargeVis. It starts with a speeded up approximate
nearest neighbor algorithm that has complexity O(n) as
compared to O(n logn) for the speeded up nearest neigh-
bor algorithms of van der Maaten (2014). The Tang et al.
(2016) algorithm is built upon random projection trees but
significantly improved by using neighbor exploring. The
basic idea of this, similar to the LINE construct in Tang
et al. (2015) and referenced in Section 5.3.2, is that “the
neighbor of my neighbor is also likely to be my neigh-
bor”. Specifically, a few random projection trees are built
to construct an approximate k-nearest neighbor graph, the
accuracy of which may not be so high. Then for each node
of the graph, the neighbors of its neighbor are searched,
which are also likely to be candidates of its nearest neigh-
bor. The accuracy may then be improved by multiple it-
erations. The claim is that the accuracy of this k-nearest
neighbor graph quickly improves to almost 100% with-
out investing in many trees. For the weights of the near-
est neighbor graph, essentially the same procedure as in
t-SNE is used. The graph is symmetrized by setting the
weights between xi and xj to wij = pj |i+pi|j

2n
, where pi|j

and pj |i are defined via (20). Before using the LargeVis
algorithm itself a preprocessing step can be used where
the dimension is reduced to say 100 by using the Skip-
Gram network embedding technique explained in Sec-
tion 5.3. The negative sampling technique of Mikolov
et al. (2013) is used in the Skip-Gram step.

For the time complexity of the optimization, done with
asynchronous stochastic gradient descent, each stochas-
tic gradient step takes O(sM), where M is the number of
negative samples, say M is from 5−10, and s is the num-
ber of dimensions of the low-dimensional space, s = 2,3.
Therefore, the overall complexity is O(sMn), which is
linear in the number of nodes.

6.3 UMAP

Sections 4.1 and 4.2 were concerned with topological
methods in manifold learning and persistence homology.
In particular, filters of simplicial complexes were used in
Section 1.2 of the Supplementary Material (Tjøstheim,
Jullum and Løland, 2023). In the first part of McInnes,
Healy and Melville (2018), these filters are generalized to
simplicial sets. In addition, components of fuzzy set the-
ory, category theory and functor theory are used to com-
pute fuzzy topological representations.
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Letting {Y1, . . . , Yn} ⊆ R
m and {X1, . . . ,Xn} ⊆ R

p

with m � p, in visualization we have a situation where
m is 2 or 3.

To compare two fuzzy sets generated by {X1, . . . ,Xn}
and {Y1, . . . , Yn}, respectively, fuzzy set cross entropy is
used in UMAP. The use of advanced concepts of algebraic
topology makes the first part of this paper hard to read. In
the computational part of the paper, however, inspired by
motivations and ideas of the first part, the authors special-
ize to a k-neighborhood graph situation where the analogy
with t-SNE and LargeVis is easier to appreciate.

As with other k-neighbor graph based algorithms,
UMAP, can be described in two phases. In the first phase,
a particular weighted k-neighbor graph is constructed. In
the second phase, a low-dimensional layout of this graph
is made. The theoretical basis for UMAP in the first part
of McInnes, Healy and Melville (2018) provides novel
approaches to both of these phases.

Let {X1, . . . ,Xn} be the input data set with a jointly
given matrix D that can be thought of as consisting of
Euclidean distances between the data vectors. For each
Xi , one can compute the set of k nearest neighbors
{Xi1, . . . ,Xik }. There are many choices of a nearest neigh-
bor algorithm. McInnes, Healy and Melville (2018) use
the algorithm of Dong, Moses and Li (2018).

This can be used to define a weighted directed graph
G′ = (V ,E,w). The nodes of G′ are the set {X1, . . . ,Xn}
the directed edges are {(Xi,Xij )|1 ≤ j ≤ k,1 ≤ i ≤ n}
and a weight function defined in McInnes, Healy and
Melville (2018). Let A be the weighted adjacency matrix
of G′. An undirected graph G is obtained by introducing
the symmetric adjacency matrix

B = A + AT − A ◦ AT ,

where ◦ denotes the Hadamard (pointwise) product.
The {X1, . . . ,Xn} data set is next connected to a low-

dimensional data set {Y1, . . . , Yn}, where the dimension is
2 or 3 if visualization is considered. The transition from
{X1, . . . ,Xn} to {Y1, . . . , Yn} is accomplished by a force
directed graph layout algorithm. The history of this kind
of graph layout goes far back, Tutte (1963). A more re-
cent account can be found in Kobourov (2012). The de-
tails of the algorithm as used in UMAP with an iterative
application of attractive and repulsive forces are given in
McInnes, Healy and Melville (2018, page 14). It should
be noted that the terminology of attractive and repulsive
forces is used in van der Maaten and Hinton (2008) as
well, but unlike their paper where there is a random set-
like initialization, in UMAP a spectral layout (cf. Sec-
tions 3.5 and 5.2) is used to initialize the embedding. This
is claimed to provide faster convergence and greater sta-
bility within the algorithm. Note that negative sampling,
as treated in Section 5.3, is also important to reduce the
computational burden.

6.4 A Brief Comparison of t -SNE, LargeVis and
UMAP

A number of experiments were performed in McInnes,
Healy and Melville (2018) with a comparison to t-SNE
and LargeVis. The UMAP works on par with or better
than these algorithms for those examples.

All of the embedding algorithms have been demon-
strated to work well in a number of quite complicated sit-
uations. Nevertheless, as pointed out by McInnes, Healy
and Melville, it is important to be aware of some weak-
nesses of these algorithms that could create fruitful chal-
lenges for further research.

t-SNE, LargeVis and UMAP all lack the strong inter-
pretability of PCA and it is difficult to see that something
like a factor analysis can be performed.

One of the core assumptions is that it is assumed that
there exists a lower-dimensional manifold structure in the
data. If this is not so, there is always the danger that a spu-
rious noise driven embedding can be the result. This dan-
ger is reduced as the sample size increases. Developing an
asymptotic analysis and finding more robust algorithms is
clearly a challenge.

For all three algorithms a number of approximations are
made, such as the use of approximate nearest neighbor
algorithms and negative sampling used in optimization.
Particularly for small sample sets the effect of these ap-
proximations may be nonnegligible.

6.5 An Illustrating Example

The illustrating example consists of two networks, each
having two different types of nodes (colored red and blue,
respectively) corresponding to two different communi-
ties. The first one, the homogeneous graph in Figure 5(a),
is very simple and is simulated from a stochastic block
model (Karrer and Newman, 2011), mentioned in Sec-
tion 5.2.4, with 2 communities, 100 nodes, average node
degree d = 10, and ratio of between-community edges
over within-community edges β = 0.4. In this setup, the
number of edges per node is Poisson distributed with ex-
pected number of edges of 10. This simple network has
very little overlap between the two types of nodes.

The second one is somewhat more complex, the hetero-
geneous graph in Figure 5(b), and is simulated from three
subgraphs a, b and c, that has 2 communities each:

Graph a: 30 nodes, average node degree d = 7, ratio of
between-block edges over within-block edges β = 0.2

Graph b: 30 nodes, average node degree d = 15, ratio of
between-block edges over within-block edges β = 0.4

Graph c: 40 nodes, average node degree d = 7, ratio of
between-block edges over within-block edges β = 0.2,
and an unbalanced community proportion; a probabil-
ity of 3/4 for community 1 and a probability of 1/4 for
community 2
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FIG. 5. Graphs, visualizations and classification results with a k-nearest neighbors algorithm with k = 5.



STATISTICAL EMBEDDING 435

To link graphs a, b and c, some random edges are added
between nodes from the same community.1

The purpose of the illustrating example is to examine
how well these network structures are managed by t-SNE,
LargeVis and UMAP, how robust they are to parameter
choices inherent in the three methods, and how they com-
pare with traditional principal component analysis (PCA)
visualization.

The visualization is done in two steps. First the net-
works are embedded in R

m with m = 64 using the Skip-
Gram routine node2vec with (cf. Section 5.3.2) L = 30
nodes in each random walk and γ = 200 walks per node,
and a word2vec window length of K = 5 where all nodes
are included. The second step is to reduce the point cloud
in R

64 to R
2, that is, the visualization step using PCA and

the three visualization algorithms with a selection of dif-
ferent tuning parameters. (In t-SNE, p is the perplexity
parameter; in LargeVis, n is the number of negative sam-
ples, p the total weight of positive interactions; in UMAP
n is the number of nearest-neighbors, m is a distance pa-
rameter, where low m gives clumpier embeddings.) The
results are given in Figures 5(a) and 5(b).

Underneath the figures are given classification scores
for the two types of nodes (communities) in the study.
These are classified on a neighborhood basis. In the first
line of each subtable the class of a node is determined us-
ing the average of the 5 nearest neighbors; in the second
by the majority vote among these 5 nearest neighbors. The
first column “org_embedding” gives the classification re-
sults for the 64-dimensional embedding in step 1.

For the simple network, PCA does well, on par with the
three other visualization algorithms, both visually and in
the classification. The tuning parameters does not seem to
make much of a difference with the exception of t-SNE
with p = 5. For the more complicated network, PCA is
in trouble both visually and with respect to classification.
In this case, the dependence on tuning parameters seems
to be greater, but most of the visualizations manage to
pick out the three subgraphs a, b and c. For all values of
the tuning parameters t-SNE, LargeVis and UMAP, all do
clearly better than PCA. Somewhat surprisingly, perhaps,
the embedding in 64 dimensions gives result not very dif-
ferent from those of the three visualizations routines. We
also did experiments with other embedding dimensions
ranging from 2 to 256. Again the classification results
were not much different. This could be due to the fact
that the number of nodes and links in these experiments
are very modest compared to the real data experiments
in the Skip-Gram references given in Sections 5.3.1 and
5.3.2, which has number of nodes and links of an entirely

1For each pair of nodes between a pair of graphs, say Graph a and
c, a new link is randomly sampled with a probability of 0.01, and links
connecting two nodes from the same community are kept.

different order. A more involved illustrating example (but
still with a moderate number of nodes) is given in Sec-
tion 3 of the Supplementary Material (Tjøstheim, Jullum
and Løland, 2023).

7. SOME CONCLUDING REMARKS

Principal components work well for linearly generated
Gaussian data. It may also work well for other types of
data and is probably still the most important statistical
embedding method. But, on the other hand, it is not diffi-
cult to find examples where it does not work. The search
for nonlinear extensions started long ago with the MDS
method. In fact, multidimensional scaling methods con-
tain ideas that have been found relevant in several recent
nonlinear algorithms.

There is no universally superior method that works bet-
ter than any of the others in all situations. For Gaussian
or approximately Gaussian data ordinary principal com-
ponents should be preferred. If the distribution can be
approximated locally by a Gaussian, the potential of lo-
cally Gaussian methods as outlined in Tjøstheim, Otneim
and Støve (2022b) could be investigated. Other nonlinear
methods depend on local linear structures in the data. For
data sets with holes or cavities, topological data analy-
sis is a natural option. Data that form a network has arti-
ficial neural network methods as an obvious candidate.
The Skip-Gram method of Section 5.3.1 is based on a
single layer artificial network. Deep learning algorithms
are based on multiple layer neural networks and is an at-
tractive alternative for more complicated dependencies.
The neural network approaches have an advantage in their
speed, making it possible to treat ultra high-dimensional
data sets with complex relationships.

In this paper, we have covered selected methods of non-
linear embedding generalizing PCA, topological embed-
dings in persistence diagrams, network embedding and
embedding to dimension 2 (i.e., visualization). In addi-
tion, in the course of the review, we have pointed to some
cases of an apparent and arguably widening gap between
developments in data science, including computer and
algorithmic-based methods, and more traditional statisti-
cal modeling methods. We have also sought to point out
specific issues that could benefit from more input from
statisticians. These may be conveniently summed up in
the following keypoints:

1. In quite a few algorithms, there are parameters to
be chosen, and the performance of the algorithm may de-
pend quite strongly on these choices. Examples can be
found in Skip-Gram, spectral community detection, the
Mapper, and there are others. There is a need for well-
founded methods for making in some sense optimal or
near optimal choices of such parameters—in some cases
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as an alternative to the computational expensive empiri-
cal optimization routines, which typically also have a ran-
domness component. As mentioned in Section 5.7, infor-
mation criterion based solution is one option, in particular
likelihood-free methods like GIC might be one way to go
about this.

2. It is highly desirable to reduce the gap between
machine learning algorithmic techniques and statistical
modeling. A good example of a bridging attempt is the
stochastic block models for which one can do statistical
inference and which has also resulted in decent network
algorithms. One needs more of this!

3. More critical statistical work is needed to test the
sanity and robustness of algorithms. One example is the
close investigation of the modularity algorithm reported
on in Section 5.2.4. It is useful to put algorithms to stress
tests, but it is important to find a balancing point between
such criticism and perceived usefulness of an algorithm.

It is crucial, however, to point out that this is a two-way
relationship. We are hopeful that interaction between ma-
chine learning and statistical modeling could bring about
synergy effects for both disciplines.

ACKNOWLEDGMENTS

The authors would like to thank two anonymous refer-
ees, an Associate Editor and in particular the editor for
their constructive and very helpful comments that im-
proved the quality of this paper.

FUNDING

This work was supported by the Norwegian Research
Council Grant 237718 (BigInsight).

SUPPLEMENTARY MATERIAL

Supplement to “Statistical Embedding: Beyond
Principal Components” (DOI: 10.1214/22-STS881
SUPP; .pdf). The Supplement (Tjøstheim, Jullum and
Løland, 2023) contains more details on persistence dia-
grams, simplical complexes and word embedding, as well
as a more involved variant of the network example in Sec-
tion 6.5.

REFERENCES

AIZERMAN, M. A., BRAVERMAN, E. M. and ROZONOER, L. I.
(1956). Theoretical foundations of the potential function method in
pattern recognition learning. Autom. Remote Control 25 821–137.

ARMILLOTTA, M., FOKIANOS, K. and KRIKIDIS, I. (2022). Gener-
alized linear models network autoregression. In Network Science
112–125. International Conference on Network Science.

BAGLAMA, J. and REICHEL, L. (2005). Augmented implicitly
restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput.
27 19–42. MR2201173 https://doi.org/10.1137/04060593X

BELKIN, M. and NIYOGI, P. (2002). Laplacian eigenmaps and spec-
tral techniques for embedding and clustering. In Advances in In-
formation Processing Systems (T. K. Leen, T. G. Dietterich and V.
Treps, eds.). MIT Press, Cambridge, MA.

BELKIN, M. and NIYOGI, P. (2003). Laplacian eigenmaps for di-
mensionality reduction and data representation. Neural Comput. 15
1373–1396.

BIAN, R., KOH, Y. S., DOBBIE, G. and DIVOLI, A. (2019). Net-
work embedding and change modeling in dynamic heterogeneous
networks. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval
861–864.

BICKEL, P. and CHEN, A. (2009). A nonparametric view of network
models and Newman–Girvan and other modularities. Proc. Natl.
Acad. Sci. 106 21068–21073.

BICKEL, P. J. and SARKAR, P. (2016). Hypothesis testing for auto-
mated community detection in networks. J. R. Stat. Soc. Ser. B.
Stat. Methodol. 78 253–273. MR3453655 https://doi.org/10.1111/
rssb.12117

BICKEL, P., CHOI, D., CHANG, X. and ZHANG, H. (2013). Asymp-
totic normality of maximum likelihood and its variational approx-
imation for stochastic blockmodels. Ann. Statist. 41 1922–1943.
MR3127853 https://doi.org/10.1214/13-AOS1124

BLONDEL, V. D., GUILLAUME, J.-L., LAMBIOTTE, R. and LEFEB-
VRE, E. (2008). Fast unfolding of communities in large networks.
J. Stat. Mech. Theory Exp. 2008 P10008.

BOSER, B. E., GUYON, I. M. and VAPNIK, V. N. (1992). A training
algorithm for optimal margin classifiers. In Fifth Annual Workshop
on COLT, ACM, Pittsburgh, PA.

BUKKURI, A., ANDOR, N. and DARCY, I. K. (2021). Applications
of topological data analysis on oncology. Front. Artif. Intell. Mach.
Learn. Artif. Intell. 4 1–14.

CANNINGS, T. I. and SAMWORTH, R. J. (2017). Random-projection
ensemble classification. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79
959–1035. MR3689307 https://doi.org/10.1111/rssb.12228

CARLSSON, G. (2009). Topology and data. Bull. Amer. Math.
Soc. (N.S.) 46 255–308. MR2476414 https://doi.org/10.1090/
S0273-0979-09-01249-X

CARRIÈRE, M., MICHEL, B. and OUDOT, S. (2018). Statistical anal-
ysis and parameter selection for Mapper. J. Mach. Learn. Res. 19
Paper No. 12, 39 pp. MR3862419

CARRIÈRE, M. and RABADÁN, R. (2020). Topological data analysis
of single-cell Hi-C contact maps. In Topological Data Analysis—
The Abel Symposium 2018. Abel Symp. 15 147–162. Springer,
Cham. MR4338672 https://doi.org/10.1007/978-3-030-43408-3_6

CHAZAL, F. and MICHEL, B. (2017). An introduction to topological
data analysis: Fundamental and practical aspects for data scientists.
Preprint. Available at arXiv:1710.04019v1.

CHAZAL, F. and MICHEL, B. (2021). An introduction to topological
data analysis: Fundamental and practical aspects for data scientists.
Front. Artif. Intell. Mach. Learn. Artif. Intell. 4 1–28.

CHEN, Y.-C., GENOVESE, C. R. and WASSERMAN, L. (2015).
Asymptotic theory for density ridges. Ann. Statist. 43 1896–1928.
MR3375871 https://doi.org/10.1214/15-AOS1329

CHEN, Y. C., HO, S., FREEMEN, P. E., GENOVESE, C. R. and
WASSERMAN, L. (2015a). Cosmic web reconstruction through
density ridges: Methods and algorithm. Mon. Not. R. Astron. Soc.
454 1140–1156.

CHEN, Y. C., HO, S., TENNETI, A., MANDELBAUM, R., CROFT, R.,
DIMATTEO, T., FREEMAN, P. E., GENOVESE, C. R. and
WASSERMAN, L. (2015b). Investigating galaxy-filament align-
ments in hydrodynamic simulations using density ridges. Mon. Not.
R. Astron. Soc. 454 3341–3350.

https://doi.org/10.1214/22-STS881SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=2201173
https://doi.org/10.1137/04060593X
https://mathscinet.ams.org/mathscinet-getitem?mr=3453655
https://doi.org/10.1111/rssb.12117
https://mathscinet.ams.org/mathscinet-getitem?mr=3127853
https://doi.org/10.1214/13-AOS1124
https://mathscinet.ams.org/mathscinet-getitem?mr=3689307
https://doi.org/10.1111/rssb.12228
https://mathscinet.ams.org/mathscinet-getitem?mr=2476414
https://doi.org/10.1090/S0273-0979-09-01249-X
https://mathscinet.ams.org/mathscinet-getitem?mr=3862419
https://mathscinet.ams.org/mathscinet-getitem?mr=4338672
https://doi.org/10.1007/978-3-030-43408-3_6
http://arxiv.org/abs/arXiv:1710.04019v1
https://mathscinet.ams.org/mathscinet-getitem?mr=3375871
https://doi.org/10.1214/15-AOS1329
https://doi.org/10.1214/22-STS881SUPP
https://doi.org/10.1111/rssb.12117
https://doi.org/10.1090/S0273-0979-09-01249-X


STATISTICAL EMBEDDING 437

CLAESKENS, G., CROUX, C. and VAN KERCKHOVEN, J. (2008).
An information criterion for variable selection in support vec-
tor machines. J. Mach. Learn. Res. 9 541–558. MR2417246
https://doi.org/10.2139/ssrn.1094652

COIFMAN, R. R. and LAFON, S. (2006). Diffusion maps. Appl. Com-
put. Harmon. Anal. 21 5–30. MR2238665 https://doi.org/10.1016/
j.acha.2006.04.006

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. and STEIN, C.
(2022). Introduction to Algorithms, 3rd ed. MIT Press, Cambridge,
MA. MR2572804

CRANE, H. and DEMPSEY, W. (2015). A framework for statistical
network modeling. Preprint. Available at arXiv:1509.08185.

CRAWFORD, L., MONOD, A., CHEN, A. X., MUKHERJEE, S.
and RABADÁN, R. (2020). Predicting clinical outcomes in
glioblastoma: An application of topological and functional data
analysis. J. Amer. Statist. Assoc. 115 1139–1150. MR4143455
https://doi.org/10.1080/01621459.2019.1671198

CUI, P., WANG, X., PEI, J. and ZHU, W. (2019). A survey on network
embedding. IEEE Trans. Knowl. Data Eng. 31 833–852.

DE SILVA, V. and TENENBAUM, J. (2002). Global versus local meth-
ods in nonlinear dimensionality reduction. Adv. Neural Inf. Process.
Syst. 15.

DECELLE, A., KRZAKALA, F., MOORE, C. and ZDEBOROVÁ, L.
(2011). Asymptotic analysis of the stochastic block model for mod-
ular networks and its algorithmic applications. Phys. Rev. E 84
066106.

DEVROYE, L. and WISE, G. L. (1980). Detection of abnormal be-
havior via nonparametric estimation of the support. SIAM J. Appl.
Math. 38 480–488. MR0579432 https://doi.org/10.1137/0138038

DONG, Y., CHAWLA, N. V. and SWAMI, A. (2017). Metapath2vec:
Scalable representation learning for heterogeneous networks. Kid
17, 2017, Halifax, NS, Canada.

DONG, W., MOSES, C. and LI, K. (2018). Efficient k-nearest neigh-
bour graph construction for generic similarity measures. In Pro-
ceedings of the 20th International Conference of the World Wide
Web 577–586, New York.

DU, L., WANG, Y., SONG, G., LU, Z. and WANG, J. (2018). Dynamic
network embedding: An extended approach for Skip-Gram based
network embedding. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJ(AI-18).

DUCHAMP, T. and STUETZLE, W. (1996). Extremal properties
of principal curves in the plane. Ann. Statist. 24 1511–1520.
MR1416645 https://doi.org/10.1214/aos/1032298280

EDELSBRUNNER, H., LETCHER, D. and ZOMORODIAN, A.
(2002). Topological persistence and simplification. Discrete Com-
put. Geom. 28 511–533. MR1949898 https://doi.org/10.1007/
s00454-002-2885-2

GENOVESE, C. R., PERONE-PACIFICO, M., VERDINELLI, I. and
WASSERMAN, L. (2012). Manifold estimation and singular de-
convolution under Hausdorff loss. Ann. Statist. 40 941–963.
MR2985939 https://doi.org/10.1214/12-AOS994

GENOVESE, C. R., PERONE-PACIFICO, M., VERDINELLI, I.
and WASSERMAN, L. (2014). Nonparametric ridge estimation.
Ann. Statist. 42 1511–1545. MR3262459 https://doi.org/10.1214/
14-AOS1218

GHOJOGH, B., GHODSI, A., KARRAY, F. and CROWLEY, M. (2021).
Johnson–Lindenstrauss lemma, linear and nonlinear random pro-
jections, random Fourier features and random kitchen sinks: Tuto-
rial and survey. Preprint. Available at arXiv:2108.04172v1.

GHRIST, R. (2018). Homological algebra and data. In The Mathemat-
ics of Data. IAS/Park City Math. Ser. 25 273–325. Amer. Math.
Soc., Providence, RI. MR3839171

GIRVAN, M. and NEWMAN, M. E. J. (2002). Community structure
in social and biological networks. Proc. Natl. Acad. Sci. USA 99
7821–7826. MR1908073 https://doi.org/10.1073/pnas.122653799

GREENE, D. and CUNNINGHAM, P. (2011). Tracking the evolution of
communities in dynamic social networks. Report Idiro Technolo-
gies, Dublin, Ireland.

GRETTON, A. (2019). Introduction to RKHS, and some simple kernel
algorithms. Lecture notes.

GROVER, A. and LESKOVEC, J. (2016). node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing 855–864.

HAGHVERDI, L., BUETTNER, F. and THEIS, F. J. (2015). Diffu-
sion maps for high-dimensional single-cell analysis of differenti-
ation data. Bioinformatics 31 2989–2998. https://doi.org/10.1093/
bioinformatics/btv325

HASTIE, T. (1984). Principal curves and surfaces. Laboratory for
Computational Statistics Technical Report 11, Stanford Univ.,
Dept. Statistics. MR2634007

HASTIE, T. and STUETZLE, W. (1989). Principal curves. J. Amer.
Statist. Assoc. 84 502–516. MR1010339

HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2019). The Ele-
ments of Statistical Learning: Data Mining, Inference, and Pre-
diction, 2nd ed. Springer Series in Statistics. Springer, New York.
MR2722294 https://doi.org/10.1007/978-0-387-84858-7

HINTON, G. E. and ROWEIS, S. T. (2002). Stochastic neighbour em-
bedding. Adv. Neural Inf. Process. Syst. 15 833–840.

HINTON, G. E. and SALAKHUTDINOV, R. R. (2006). Reducing the
dimensionality of data with neural networks. Science 313 504–507.
MR2242509 https://doi.org/10.1126/science.1127647

HOFF, P. D., RAFTERY, A. E. and HANDCOCK, M. S. (2002).
Latent space approaches to social network analysis. J. Amer.
Statist. Assoc. 97 1090–1098. MR1951262 https://doi.org/10.1198/
016214502388618906

HOLLAND, P. W., LASKEY, K. B. and LEINHARDT, S. (1983).
Stochastic blockmodels: First steps. Soc. Netw. 5 109–137.
MR0718088 https://doi.org/10.1016/0378-8733(83)90021-7

HOTELLING, H. (1933). Analysis of a complex of statistical variables
into principal components. J. Educ. Psychol. 24 417–441.

HOTELLING, H. (1936). Relations between two sets of variates.
Biometrika 28 321–377.

HYVÄRINEN, A. and OJA, E. (2000). Independent component analy-
sis: Algorithms and applications. Neural Netw. 13 411–430.

JOHNSON, W. B. and LINDENSTRAUSS, J. (1984). Extensions of
Lipschitz mappings into a Hilbert space. In Conference in Mod-
ern Analysis and Probability (New Haven, Conn., 1982). Contemp.
Math. 26 189–206. Amer. Math. Soc., Providence, RI. MR0737400
https://doi.org/10.1090/conm/026/737400

JOLLIFFE, I. T. (2002). Principal Component Analysis, 2nd ed.
Springer Series in Statistics. Springer, New York. MR2036084

JOSSE, J. and HUSSON, F. (2012). Selecting the number of com-
ponents in principal component analysis using cross-validation
approximations. Comput. Statist. Data Anal. 56 1869–1879.
MR2892383 https://doi.org/10.1016/j.csda.2011.11.012

KARRER, B. and NEWMAN, M. E. J. (2011). Stochastic blockmodels
and community structure in networks. Phys. Rev. E (3) 83 016107,
10 pp. MR2788206 https://doi.org/10.1103/PhysRevE.83.016107

KAZEMI, S. M., GOEL, R., JAIN, K., KOBYZEV, I., SETHI, A.,
FORSYTH, P. and POUPART, P. (2020). Representation learning for
dynamic graphs: A survey. J. Mach. Learn. Res. 21 Paper No. 70,
73 pp. MR4095349

KIM, J., RINALDO, A. and WASSERMAN, L. (2019). Minimax rates
for estimating the dimension of a manifold. J. Comput. Geom. 10
42–95. MR3918925 https://doi.org/10.20382/jocg.v10i1a3

KOBOUROV, S. (2012). Spring embedders and forced directed graph
drawing algorithms. Preprint. Available at arXiv:1201.3011.

KOHONEN, T. (1982). Self-organized formation of topologically cor-
rect feature map. Biol. Cybernet. 43 59–69.

https://mathscinet.ams.org/mathscinet-getitem?mr=2417246
https://doi.org/10.2139/ssrn.1094652
https://mathscinet.ams.org/mathscinet-getitem?mr=2238665
https://doi.org/10.1016/j.acha.2006.04.006
https://mathscinet.ams.org/mathscinet-getitem?mr=2572804
http://arxiv.org/abs/arXiv:1509.08185
https://mathscinet.ams.org/mathscinet-getitem?mr=4143455
https://doi.org/10.1080/01621459.2019.1671198
https://mathscinet.ams.org/mathscinet-getitem?mr=0579432
https://doi.org/10.1137/0138038
https://mathscinet.ams.org/mathscinet-getitem?mr=1416645
https://doi.org/10.1214/aos/1032298280
https://mathscinet.ams.org/mathscinet-getitem?mr=1949898
https://doi.org/10.1007/s00454-002-2885-2
https://mathscinet.ams.org/mathscinet-getitem?mr=2985939
https://doi.org/10.1214/12-AOS994
https://mathscinet.ams.org/mathscinet-getitem?mr=3262459
https://doi.org/10.1214/14-AOS1218
http://arxiv.org/abs/arXiv:2108.04172v1
https://mathscinet.ams.org/mathscinet-getitem?mr=3839171
https://mathscinet.ams.org/mathscinet-getitem?mr=1908073
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1093/bioinformatics/btv325
https://mathscinet.ams.org/mathscinet-getitem?mr=2634007
https://mathscinet.ams.org/mathscinet-getitem?mr=1010339
https://mathscinet.ams.org/mathscinet-getitem?mr=2722294
https://doi.org/10.1007/978-0-387-84858-7
https://mathscinet.ams.org/mathscinet-getitem?mr=2242509
https://doi.org/10.1126/science.1127647
https://mathscinet.ams.org/mathscinet-getitem?mr=1951262
https://doi.org/10.1198/016214502388618906
https://mathscinet.ams.org/mathscinet-getitem?mr=0718088
https://doi.org/10.1016/0378-8733(83)90021-7
https://mathscinet.ams.org/mathscinet-getitem?mr=0737400
https://doi.org/10.1090/conm/026/737400
https://mathscinet.ams.org/mathscinet-getitem?mr=2036084
https://mathscinet.ams.org/mathscinet-getitem?mr=2892383
https://doi.org/10.1016/j.csda.2011.11.012
https://mathscinet.ams.org/mathscinet-getitem?mr=2788206
https://doi.org/10.1103/PhysRevE.83.016107
https://mathscinet.ams.org/mathscinet-getitem?mr=4095349
https://mathscinet.ams.org/mathscinet-getitem?mr=3918925
https://doi.org/10.20382/jocg.v10i1a3
http://arxiv.org/abs/arXiv:1201.3011
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1214/14-AOS1218
https://doi.org/10.1093/bioinformatics/btv325
https://doi.org/10.1198/016214502388618906


438 D. TJØSTHEIM, M. JULLUM AND A. LØLAND

KONISHI, S. and KITAGAWA, G. (2008). Information Criteria and
Statistical Modeling. Springer Series in Statistics. Springer, New
York. MR2367855 https://doi.org/10.1007/978-0-387-71887-3

KOSSINETS, G. and WATTS, D. J. (2006). Empirical analysis of
an evolving social network. Science 311 88–90. MR2192483
https://doi.org/10.1126/science.1116869

LEE, C. and WILKINSON, D. J. (2019). A review of stochastic block
models and extensions for graph clustering. Appl. Netw. Sci. 4 122.

LEI, J. and RINALDO, A. (2015). Consistency of spectral clustering
in stochastic block models. Ann. Statist. 43 215–237. MR3285605
https://doi.org/10.1214/14-AOS1274

LEVINA, E. and BICKEL, P. (2004). Maximum likelihood estimation
of intrinsic dimension. In Advances in Neural Information Process-
ing Systems (L. Saul, Y. Weiss and L. Bottou, eds.) 17. MIT Press,
Cambridge, MA.

LI, P., HASTIE, T. J. and CHURCH, K. W. (2007). Nonlinear estima-
tors and tail bounds for dimension reduction in l1 using Cauchy ran-
dom projections. J. Mach. Learn. Res. 8 2497–2532. MR2353840
https://doi.org/10.1007/978-3-540-72927-3_37

LIM, B. and ZOHREN, S. (2021). Time-series forecasting with deep
learning: A survey. Philos. Trans. R. Soc. Lond. A 379 Paper No.
20200209, 14 pp. MR4236146 https://doi.org/10.1098/rsta.2020.
0209

LITTLE, A. V., MAGGIONI, M. and ROSASCO, L. (2011). Multiscale
geometric methods for estimating intrinsic dimension. In Proc.
SampTA 4:2.

LUDKIN, M., ECKLEY, I. and NEAL, P. (2018). Dynamic stochastic
block models: Parameter estimation and detection of changes in
community structure. Stat. Comput. 28 1201–1213. MR3850391
https://doi.org/10.1007/s11222-017-9788-9

LUNDE, B. Å. S., KLEPPE, T. S. and SKAUG, H. J. (2020). An in-
formation criterion for automatic gradient tree boosting. Preprint.
Available at arXiv:2008.05926.

MARKOV, A. (1958). The insolubility of the problem of homeomor-
phy. Dokl. Akad. Nauk SSSR 121 218–220. MR0097793

MCINNES, L., HEALY, J. and MELVILLE, J. (2018). UMAP: Uniform
manifold approximation for dimension reduction. Preprint. Avail-
able at arXiv:1802.03426v2.

MIKOLOV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. and
DEAN, J. (2013). Distributed representation of words and phrases
and their composability. In Advances in Neural Information Pro-
cessing Systems 26: Proceedings Annual 27th Conference on Neu-
ral Information Processing Systems, Lake Tahoe, Nevada, USA.

NEWMAN, M. E. J. (2006). Modularity and community structure in
networks. Proc. Natl. Acad. Sci. 103 8577–8582.

NEWMAN, M. (2020). Networks, 2nd ed. Oxford Univ. Press,
Oxford. MR3838417 https://doi.org/10.1093/oso/9780198805090.
001.0001

NEWMAN, M. E. J. and GIRVAN, M. (2004). Finding and evaluating
community networks. Phys. Rev. E 69 026113.

NEWMAN, M. E. J. and REINERT, G. (2016). Estimating the number
of communities in a network. Phys. Rev. Lett. 137 078301.

NIYOGI, P., SMALE, S. and WEINBERGER, S. (2008). Finding
the homology of submanifolds with high confidence from ran-
dom samples. Discrete Comput. Geom. 39 419–441. MR2383768
https://doi.org/10.1007/s00454-008-9053-2

OTNEIM, H., JULLUM, M. and TJØSTHEIM, D. (2020). Pairwise local
Fisher and naive Bayes: Improving two standard discriminants. J.
Econometrics 216 284–304. MR4077395 https://doi.org/10.1016/j.
jeconom.2020.01.019

OZERTEM, U. and ERDOGMUS, D. (2011). Locally defined prin-
cipal curves and surfaces. J. Mach. Learn. Res. 12 1249–1286.
MR2804600

PEARSON, K. (1901). On lines and planes of closest fit to systems of
points in space. Philos. Mag. 2 559–572.

PEIXITO, T. P. (2021). Descriptive vs. inferential community de-
tection: Pitfalls, myths and half-truths. Preprint. Available at
arXiv:2112.00183v1.

PEIXOTO, T. P. (2019). Bayesian stochastic blockmodeling. In Ad-
vances in Network Clustering and Blockmodeling 289–332.

PEROZZI, B., AL-RFOU, R. and SKIENA, S. (2014). Deepwalk: On-
line learning of social representations. In Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining 701–710.

QIAO, W. and POLONIK, W. (2021). Algorithms for ridge es-
timation with convergence guarantees. Preprint. Available at
arXiv:2014.12314v1.

QIU, J., DONG, Y., MA, H., LI, J., WANG, K. and TANG, J. (2018).
Network embedding as matrix factorization: Unifying DeepWalk,
LINE, PTE, and node2vec. In Proceedings WSDM. ACM, New
Tork.

QIU, J., DONG, Y., MA, H., LI, J., WANG, K. and TANG, J. (2019).
NetSMF: Large-scale network embedding as sparse matrix factor-
ization. In Proceedings of the 2019 World Wide Web Conference,
May 13–17, San Francisco, CA, USA.

RAVISSHANKER, N. and CHEN, R. (2019). Topological data analysis
(TDA) for time series. Preprint. Available at arXiv:1909.10604v1.

ROHE, K., CHATTERJEE, S. and YU, B. (2011). Spectral clustering
and the high-dimensional stochastic blockmodel. Ann. Statist. 39
1878–1915. MR2893856 https://doi.org/10.1214/11-AOS887

ROHE, K., QIN, T. and YU, B. (2016). Co-clustering directed graphs
to discover asymmetries and directional communities. Proc. Natl.
Acad. Sci. USA 113 12679–12684. MR3576189 https://doi.org/10.
1073/pnas.1525793113

ROWEIS, S. T. and SAUL, L. K. (2000). Nonlinear dimensionality
reduction by locally linear embedding. Science 290 2323–2326.
https://doi.org/10.1126/science.290.5500.2323

SALINAS, D., FLUNKERT, V., GASTHAUS, J. and
JANUSCHOWSKI, T. (2020). DeepAR: Probabilistic forecast-
ing with autoregressive recurrent networks. Int. J. Forecast. 36
1181–1191.

SAMMON, J. W. (1969). A nonlinear mapping for data structure anal-
ysis. IEEE Trans. Comput. 18 403–409.

SCHÖLKOPF, B., SMOLA, A. and MÜLLER, K.-L. (2005). Kernel
principal components. Lecture Notes in Comput. Sci. 1327 583–
588.

SHAHRIARI, B., SWERSKY, K., WANG, Z., ADAMS, R. P. and
DE FREITAS, N. (2015). Taking the human out of the loop: A re-
view of Bayesian optimization. Proc. IEEE 104 148–175.

SINGH, G., MEMOLI, F. and CARLSSON, G. (2007). Topological
methods for the analysis of high dimensional data sets and 3D
object recognition. In Eurographics Symposium on Point Based
Graphics (M. Botsch and R. Pajarola, eds.). The Eurographics As-
sociation.

SUN, Y., NORICK, B., HAN, J., YAN, X., YU, P. and YU, X. (2012).
Integrating meta-path selection with user-guided object clustering
in heterogeneous information networks. In KDD ’12: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 1348–1356.

TANG, J., QU, M. and MEI, Q. (2015). PTE: Predictive text em-
bedding through large-scale heterogeneous text networks. Preprint.
Available at arXiv:1508.00200v1.

TANG, J., QU, M., WANG, M., ZHANG, M., YAN, J. and MEI, Q.
(2015). LINE: Large-scale information network embedding. In
Proceedings of the 24th International Conference on World Wide
Web 1067–1077.

TANG, J., LIU, J., ZHANG, M. and MEI, Q. (2016). Visualizing large-
scale and high-dimensional data. In Proceedings of the 25th Inter-
national Conference on World Wide Web 287–297.

https://mathscinet.ams.org/mathscinet-getitem?mr=2367855
https://doi.org/10.1007/978-0-387-71887-3
https://mathscinet.ams.org/mathscinet-getitem?mr=2192483
https://doi.org/10.1126/science.1116869
https://mathscinet.ams.org/mathscinet-getitem?mr=3285605
https://doi.org/10.1214/14-AOS1274
https://mathscinet.ams.org/mathscinet-getitem?mr=2353840
https://doi.org/10.1007/978-3-540-72927-3_37
https://mathscinet.ams.org/mathscinet-getitem?mr=4236146
https://doi.org/10.1098/rsta.2020.0209
https://mathscinet.ams.org/mathscinet-getitem?mr=3850391
https://doi.org/10.1007/s11222-017-9788-9
http://arxiv.org/abs/arXiv:2008.05926
https://mathscinet.ams.org/mathscinet-getitem?mr=0097793
http://arxiv.org/abs/arXiv:1802.03426v2
https://mathscinet.ams.org/mathscinet-getitem?mr=3838417
https://doi.org/10.1093/oso/9780198805090.001.0001
https://mathscinet.ams.org/mathscinet-getitem?mr=2383768
https://doi.org/10.1007/s00454-008-9053-2
https://mathscinet.ams.org/mathscinet-getitem?mr=4077395
https://doi.org/10.1016/j.jeconom.2020.01.019
https://mathscinet.ams.org/mathscinet-getitem?mr=2804600
http://arxiv.org/abs/arXiv:2112.00183v1
http://arxiv.org/abs/arXiv:2014.12314v1
http://arxiv.org/abs/arXiv:1909.10604v1
https://mathscinet.ams.org/mathscinet-getitem?mr=2893856
https://doi.org/10.1214/11-AOS887
https://mathscinet.ams.org/mathscinet-getitem?mr=3576189
https://doi.org/10.1073/pnas.1525793113
https://doi.org/10.1126/science.290.5500.2323
http://arxiv.org/abs/arXiv:1508.00200v1
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1093/oso/9780198805090.001.0001
https://doi.org/10.1016/j.jeconom.2020.01.019
https://doi.org/10.1073/pnas.1525793113


STATISTICAL EMBEDDING 439

TENENBAUM, J. B., DE SILVA, V. and LANGFORD, J. C. (2000).
A global geometric framework for nonlinear dimensionality reduc-
tion. Science 290 2319–2323. https://doi.org/10.1126/science.290.
5500.2319

TJØSTHEIM, D., JULLUM, M. and LØLAND, A. (2023). Some recent
trends in embedding of time series and dynamic networks. J. Time
Ser. Anal. To appear. https://doi.org/10.1111/jtsa.12677

TJØSTHEIM, D., JULLUM, M. and LØLAND, A. (2023). Supple-
ment to “Statistical embedding: Beyond principal components”.
https://doi.org/10.1214/22-STS881SUPP

TJØSTHEIM, D., OTNEIM, H. and STØVE, B. (2022a). Statisti-
cal dependence: Beyond Pearson’s ρ. Statist. Sci. 37 90–109.
MR4371097 https://doi.org/10.1214/21-sts823

TJØSTHEIM, D., OTNEIM, H. and STØVE, B. (2022b). Sta-
tistical Modeling Using Local Gaussian Approximation. Else-
vier/Academic Press, London. MR4382419

TORGERSON, W. S. (1952). Multidimensional scaling: I. The-
ory and method. Psychometrika 17 401–419. MR0054219
https://doi.org/10.1007/BF02288916

TUTTE, W. T. (1963). How to draw a graph. Proc. Lond. Math. Soc.
(3) 13 743–767. MR0158387 https://doi.org/10.1112/plms/s3-13.1.
743

VAN DER MAATEN, L. (2014). Accelerating t-SNE using tree-based
algorithms. J. Mach. Learn. Res. 15 3221–3245. MR3277169

VAN DER MAATEN, L. and HINTON, G. (2008). Visualizing data us-
ing t-SNE. J. Mach. Learn. Res. 9 2579–2605.

VAN DER MAATEN, L., POSTMA, E. and VAN DER HERIK, J. (2009).
Dimensionality reduction: A comparative review. Tilburg Centre
for Creative Computing, TiCC TR 2009.005.

VON LUXBURG, U. (2007). A tutorial on spectral clustering.
Stat. Comput. 17 395–416. MR2409803 https://doi.org/10.1007/
s11222-007-9033-z

WANG, Y. X. R. and BICKEL, P. J. (2017). Likelihood-based model
selection for stochastic block models. Ann. Statist. 45 500–528.
MR3650391 https://doi.org/10.1214/16-AOS1457

WASSERMAN, L. (2018). Topological data analysis. Annu. Rev.
Stat. Appl. 5 501–535. MR3774757 https://doi.org/10.1146/
annurev-statistics-031017-100045

WEI, Y.-C. and CHENG, C.-K. (1989). Towards efficient hierarchi-
cal designs by ratio cut partitioning. In 1989 IEEE International
Conference on Computer-Aided Design. Digest of Technical Papers
298–301. IEEE.

XIE, H., LI, J. and XUE, H. (2018). A survey of dimensionality re-
duction techniques based on random projection. Preprint. Available
at arXiv:1706.04371v4.

YOUNG, G. and HOUSEHOLDER, A. S. (1938). Discussion of a set of
points in terms of their mutual distances. Psychometrika 3 19–22.

YOUNG, T., HAZARIKA, D., PORIA, S. and CAMBRIA, E. (2018).
Recent trends in deep learning based natural language processing.
IEEE Comput. Intell. Mag. 13 55–75.

ZHANG, J. and CHEN, Y. (2020). Modularity based community de-
tection in heterogeneous networks. Statist. Sinica 30 601–629.
MR4213981

ZHENG, Q. (2016). Spectral techniques for heterogeneous social net-
works. Ph.D. thesis, Queen’s Univ., Ontario, Canada.

ZHOU, C., LIU, Y., LIU, X. and GAO, J. (2017). Scalable graph em-
bedding for asymmetric proximity. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence.

ZHU, X. and PAN, R. (2020). Grouped network vector autoregression.
Statist. Sinica 30 1437–1462. MR4257540 https://doi.org/10.5705/
ss.202017.0533

ZHU, X., PAN, R., LI, G., LIU, Y. and WANG, H. (2017). Network
vector autoregression. Ann. Statist. 45 1096–1123. MR3662449
https://doi.org/10.1214/16-AOS1476

ZOMORODIAN, A. and CARLSSON, G. (2005). Computing persis-
tent homology. Discrete Comput. Geom. 33 249–274. MR2121296
https://doi.org/10.1007/s00454-004-1146-y

https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1111/jtsa.12677
https://doi.org/10.1214/22-STS881SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=4371097
https://doi.org/10.1214/21-sts823
https://mathscinet.ams.org/mathscinet-getitem?mr=4382419
https://mathscinet.ams.org/mathscinet-getitem?mr=0054219
https://doi.org/10.1007/BF02288916
https://mathscinet.ams.org/mathscinet-getitem?mr=0158387
https://doi.org/10.1112/plms/s3-13.1.743
https://mathscinet.ams.org/mathscinet-getitem?mr=3277169
https://mathscinet.ams.org/mathscinet-getitem?mr=2409803
https://doi.org/10.1007/s11222-007-9033-z
https://mathscinet.ams.org/mathscinet-getitem?mr=3650391
https://doi.org/10.1214/16-AOS1457
https://mathscinet.ams.org/mathscinet-getitem?mr=3774757
https://doi.org/10.1146/annurev-statistics-031017-100045
http://arxiv.org/abs/arXiv:1706.04371v4
https://mathscinet.ams.org/mathscinet-getitem?mr=4213981
https://mathscinet.ams.org/mathscinet-getitem?mr=4257540
https://doi.org/10.5705/ss.202017.0533
https://mathscinet.ams.org/mathscinet-getitem?mr=3662449
https://doi.org/10.1214/16-AOS1476
https://mathscinet.ams.org/mathscinet-getitem?mr=2121296
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1112/plms/s3-13.1.743
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.5705/ss.202017.0533

	Introduction
	Principal Components
	Nonlinear Embeddings
	Principal Curves and Surfaces
	Algorithm for ﬁnding one principal curve f(s)

	Multidimensional Scaling
	LLE-Local Linear Embedding
	Embedding via Graphs and ISOMAP
	Graph Representation and Laplace Eigenmaps
	Diffusion Maps
	Kernel Principal Components
	Random Projection
	A Few Other Techniques

	Topological Embeddings and Topological Data Analysis (TDA)
	Manifold Learning
	Persistent Homology and Persistence Diagrams
	The Mapper

	Embedding of Networks
	A Few Elementary Concepts of Graph Theory and Matrix Representations
	Spectral Embedding and Graph Clustering
	Minimizing the cut functional
	Maximizing the modularity
	The Louvain method for community detection
	Statistical modeling, SBMs and ﬁnding communities

	Embedding a Network Using Skip-Gram
	The Skip-Gram
	Neighborhood sampling strategies

	Directed Network
	Heterogeneous Network Representation
	Embedding of Dynamic Networks
	Network Embedding: Data Science and Machine Learning Versus Statistical Modeling
	Stochastic block modeling
	Dynamic graphs and time-series modeling in networks


	Embedding in 2 or 3 Dimensions and Visualization
	t-SNE
	LargeVis
	UMAP
	A Brief Comparison of t-SNE, LargeVis and UMAP
	An Illustrating Example

	Some Concluding Remarks
	Acknowledgments
	Funding
	Supplementary Material
	References

