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ABSTRACT

Working in a Bayesian framework, we have derived a pro-
cedure for inverting rock properties based on geophysical
data. The purpose was to arrive at a widely applicable and
general procedure in which few and weak assumptions are
required for application to various inverse problems within
the geophysical industry. Our Bayesian statistical approach
combines sampling-based techniques and Gaussian approxi-
mations to assess local approximations to quantities related to
the posterior distribution of rock properties. These approxi-
mated quantities define the Bayesian inversion. A conceptual
advantage of our approach is that there are few restrictions on
the initial model, allowing realistic statistical models to be
approximated directly. The methodology is easily parallelized
and offers a range of procedures, which gives a trade-off be-
tween inversion speed and accuracy. We have tested the ap-
proach in a monitoring setting using seismic amplitudes by
evaluating a synthetic case and real data from the Sleipner
CO2 injection project. For the synthetic case, the inversion
results correspond well with the rock properties used to gen-
erate the data and the posterior distribution derived using an
MCMC approach. We also found improved accuracy com-
pared with a frequently used Gaussian inversion approach. In
the real data case, we clearly identified high-saturation layers
present in previous qualitative interpretations.

INTRODUCTION

In the geophysical industry, there is a great need for solutions to
various types of inverse problems. Most of these problems are how-
ever ill posed and seldom have a unique or well-defined solution.
The final objective of many of the inverse problems is to predict

rock properties such as porosity, lithology, saturation, permeability
etc. from geophysical data such as seismic amplitudes (Mukerji et al.,
2001; Doyen, 2007; Gunning and Glinsky, 2007; Avseth et al., 2010).
The Bayesian approach (Tarantola and Valette, 1982) is a popular
framework for solving inverse problems (Bosch et al., 2010). The
main advantage of the Bayesian approach is the possibility to incor-
porate additional knowledge of the problem and assess the uncer-
tainty after accounting for the data. In such a setting, computation
or approximation of a posterior distribution, here corresponding to
the probability distribution of the rock properties conditioned on the
observed geophysical data, determines the inversion.
Unfortunately, full analytical evaluation of the posterior distribu-

tion is only possible for highly restricted classes of distributions.
For instance, Buland and Omre (2003) perform inversion from
seismic amplitude versus offset (AVO) data to elastic parameters
(but not further to actual rock properties) by assuming that the
two model components are jointly Gaussian, resulting in an analytic
closed-formGaussian posterior distribution for the elastic parameters.
Because realistic models seldom fit such a formulation, the method-
ology may merely be viewed as an approximation, possibly far from
the actual posterior distribution (Rimstad and Omre, 2014a). Rimstad
and Omre (2014a, 2014b) relax the Gaussian model assumptions, but
to evaluate the posterior distribution, they need to use Markov Chain
Monte Carlo (MCMC; Robert and Casella, 2005) sampling proce-
dures, which may be very time consuming in high dimensions. The
Gaussian mixture approach of Grana and Della Rossa (2010) also
relaxes the Gaussian assumption, and even goes all the way to rock
properties, but it requires modeling approximations elsewhere and
thereby also operates approximately.
Several authors have restricted their attention to discrete facies as

the rock property of interest. Larsen et al. (2006) introduce Markov
property dependencies to describe a vertical profile based on seis-
mic AVO data. Buland et al. (2008), Ulvmoen and Omre (2010),
and others follow along similar lines. These approaches include an
initial step in which a distribution claimed to be multimodal is ap-
proximated by a unimodal Gaussian distribution based on Buland
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and Omre (2003). Even if the multimodality is subsequently cor-
rected for, and the results appear reasonable, the conflicting mode
assumptions have unclear implications. Further, even if the used
discrete Markov property is suitable in some situations, it generally
restricts the dependence structure. Finally, because these method-
ologies rely on the discrete nature of the facies, the approaches
cannot be directly transferred to situations with continuously distri-
buted rock properties.
Although there is a wide range of techniques in the statistical

literature for approximating Bayesian posterior distributions (for
a review, see, e.g., Green et al., 2015), there are few examples
of such techniques being directly applied to geophysical types of
inverse problems. This is possibly caused by a gap between the
computational efficiency of such techniques when being applied
to large geophysical types of inverse problems, and what is accept-
able for the industry (Mosegaard and Tarantola, 2002). Even though
they are time consuming, attempts have been made to solve such
inverse problems based on the MCMC approach (Mosegaard and
Tarantola, 1995; Malinverno, 2002; Hammer et al., 2012).
It is evident that there is a need for a computationally feasible

large-scale inversion methodology that can deal with more
general model formulations than the existing ones. Short of computa-
tional advances, attempts to make statistical methods computationally
tractable involve some kind of simplification, approximation, or intel-
ligent elimination of redundancy. For these types of inverse problems,
it often suffices to obtain inversion results for each individual cell in a
grid of the region of interest. In a Bayesian framework, such local
inversion corresponds to computing or approximating the marginal
posterior distribution in each cell and using predictors and uncertainty
measures based on those distributions as the inversion result.
Our methodology uses a local inversion approach that simplifies

the problem. Inversion of a larger region then reduces to a large
number of local inversions, which we handle individually. The ef-
ficiency of the local inversion approach lies partly in including only
the variables and data most relevant for the current local inversion.
This reduces the dimensionality of the problem to a magnitude that
we can handle efficiently, while still taking the most relevant spatial
dependence into account. The local inversion is carried out by relying
on a certain Gaussian likelihood approximation and a weighted
Monte Carlo sampling routine. Handling the local inversions indi-
vidually allows us to parallelize the full-inversion problem, leading
to heavy algorithmic speed-up compared with MCMC-type proce-
dures. There are also few modeling limitations underlying our
approach. In particular, our approach can handle any type of rock-
physics model and any type of prior distribution for the rock proper-
ties. It is not limited by specific restrictions on the spatial structure
typically present in other approaches (such as, e.g., certain Markov-
type dependence structures), and it can in principle be used with any
rock property: continuous, discrete, or a combination of the two.

METHODOLOGY

The full inverse problem is usually decomposed into two
inversions: geophysical inversion (Buland and Omre, 2003) and

rock-physics inversion (Avseth et al., 2010). The joint global prob-
lem may be described by the simple hierarchical formulation shown
in Figure 1. Here, r denotes a rock property, such as lithology,
porosity, or saturation that we are interested in. The geophysical
properties of m typically consist of density and two elastic param-
eters (either P- and S-wave velocities, or acoustic and shear imped-
ance) or any triplets of these. Finally, d denotes the geophysical data
often consisting of seismic AVO data at a few different offsets. The
geophysical data may however also represent data sources such as
root-mean-square (rms) velocity (Buland et al., 2011) or gravimet-
rics data (Hauge and Kolbjørnsen, 2015). Hence, the left arrow of
Figure 1 represents the rock-physical relation, whereas the right ar-
row represents the geophysical relation. That is, all impact from the
rock properties to the geophysical data goes through the geophysi-
cal properties.
We shall need a fair amount of notation when building our in-

version framework. We shall assume that the global quantities in
Figure 1 all operate on the same grid of the region of interest. (They
may in principle work on different grids of the region, but we ex-
clude that case for presentational simplicity.) Uppercase letters in
calligraphic font (A;B; C;D) are used to denote subsets of cells
of the gridded region. Avariable written in boldface roman font with
a calligraphic subscript (e.g., dD) refers to the subvector corre-
sponding to the subset of that subscript. A boldface roman variable
with no calligraphic subscript (e.g., d) contains the individual var-
iable(s) of the complete gridded region under consideration. For
other quantities, we will use fairly standard statistical notation: We
use a superscript roman T for the matrix transpose, pð·Þ as a generic
notation for probability distributions, ∼ for “distributed as,” μ for
the mean (vector), and Σ for the covariance matrix. The Gaussian
distribution of a variable x (with mean μ and covariance matrix Σ) is
denoted by Nxðμ;ΣÞ. Noncalligraphic subscripts will be used to
distinguish variables of similar types. A superscript asterisk will be
specifically used to denote approximate quantities used in the frame-
work, like, e.g., p�ðxÞ and μ�x. The most important quantities are also
given in Table 1.

The general framework

The overall goal of the inversion is to predict the rock properties r
from the obtained geophysical data d over a gridded interest region
A. We will handle this by focusing on one grid cell at a time, and
hence carry out predictions and uncertainty measures on grid cell
level. Because the methodology will be the same for each cell in
A, we will present the methodology by considering a single cell
A — the extension to A amounts to repeating the procedure for
each A ∈ A. Working in the Bayesian framework, carrying out
the inversion to rock properties in cell A amounts to evaluating ap-
proximated quantities or measures related to the marginal posterior
distribution pðrAjdÞ of the target variable rA. Any preferred measure
of central tendency of this posterior distribution may be used as a
predictor for the true rock property in cell A. Common selections
are the mean, mode, and median. The uncertainty may be quantified
by a measure of spread, such as the standard deviation, or through one
or more suitably chosen credibility intervals. Local probability state-
ments, such as the probability that the porosity inA is more than 0.15,
may also be computed. Our method may also produce an approxi-
mation to the complete marginal posterior distribution, should that
be of interest.Figure 1. Forward model hierarchy.
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By using Bayes’ formula, the posterior distribution of the target
variable is given by

pðrAjdÞ ∝ pðdjrAÞpðrAÞ: (1)

Here, pðrAÞ is the prior probability distribution for the target
variable, whereas pðdjrAÞ is the likelihood of the geophysical data,
conditioned only on the target variable. Hence, in pðdjrAÞ, the geo-
physical propertiesm are marginalized out along with the rock prop-
erties in other cells than A. In terms of Figure 1, this model setup
corresponds to a direct arrow from rA to d, reducing the global two
stage problem to a local one stage problem. This is beneficial because
two-step approaches do not fully account for the dependence in
Bayesian models (Bosch et al., 2010). It is not generally possible to
give a closed-form expression for pðdjrAÞ based solely on the global
geophysical and rock-physical likelihoods pðdjmÞ and pðmjrÞ.
Essentially, one would have to go through the following rewrite
of equation 1:

pðrAjdÞ ∝
ZZ

pðdjmÞpðmjrÞpðrA\AjrAÞ dm drA\ApðrAÞ

¼
ZZ

pðdjmÞpðmjrÞpðrÞ dm drA\A; (2)

where A\A denotes all cells in A except A. The dimensions of these
integrals depend on the number of cells in A and whether the geo-
physical and rock-physical models possess independence between
certain cells. For realistic problems, these are usually at least 100-di-
mensional, and in the densest cases, they might be of dimension 106

or more. Thus, we cannot tackle this problem directly via equations 1
and 2.
Instead of attempting to work with the global geophysical and

rock-physical likelihoods, our approach aims at modeling only
the part that is most relevant for the target variable rA. Let us thus
introduce the local subsets B; C, and D, which are sets of region
cells reflecting the modeled part of respectively the rock properties
r, the geophysical properties m, and the geophysical data d in the
local inversion for cellA. Their corresponding variable sets rB,mC,
and dD are named, respectively, the neighborhood variable, influ-
ence variable, and local data. To set the idea of the local subsets
straight, the bulleted list below and illustration in Figure 2 provide
basic guidelines for how these may be specified in an AVO data
setting with vertical dependence:

• All local subset variables should be centered in cell A.
• D should include the cells for which the data d are influenced

by mA, that is, half a wavelet length above and below A.
• C should include the cells for which the geophysical proper-

ties m influence the local data dD, i.e., one wavelet length
above and below A.

• B should have size at least in order of the tuning thickness.
This ensures that rB is the main source of variability for the
data interfering with the contribution from A.

Note, however, that our approach is not restricted to vertically
defined local subsets; that is, lateral dependence may in principle
also be modeled by our approach. The task of selecting the local
subsets will be discussed in more depth later on.

Referring to Bayes’ formula as in equation 1, our approximation
approach is based on the relation

pðrAjdDÞ ¼
Z

pðrBjdDÞ drB\A ∝
Z

pðdDjrBÞpðrBÞ drB\A;
(3)

where B \A denotes all cells in B except A. Replacing pðdDjrBÞ
(henceforth referred to as the local likelihood) by a Gaussian
approximation yields the following integral form approximation:

pðrAjdÞ ≈ p�ðrAjdDÞ ∝
Z

p�ðdDjrBÞpðrBÞ drB\A; (4)

where the Gaussian approximation is given by

p�ðdDjrBÞ ¼ NdD

�
μ�dDjrBðrBÞ;Σ�

dDjrBðrBÞ
�
: (5)

Table 1. Important quantities.

Symbol Description

d Vector of geophysical data for all cells in the gridded
interest region

m Vector of geophysical properties for all cells in the gridded
interest region

r Vector of the rock property of interest for all cells in the
gridded interest region

A Gridded interest region

A Cell in A under consideration

B Subset of region cells for which the rock properties are
modeled in the local inversion for rA

C Subset of region cells for which the geophysical properties
are modeled in the local inversion for rA

D Subset of region cells for which the geophysical data are
included in the local inversion for rA

rA Target variable

rB Neighborhood variable

mC Influence variable

dD Local data

G Matrix representing the impact m has on the mean of d

Σε Covariance matrix of the geophysical likelihood

Figure 2. Illustration of sensible selection of the local subsets B; C,
and D for seismic AVO data with vertical dependence.
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As will become clear in the following subsections, the Gaussian
distribution in equation 5 will be established by merging a Gaussian
approximation to the local rock-physical likelihood pðmCjrBÞ with
a Gaussian approximation to the local geophysical likelihood
pðdDjmCÞ. Based on the integral form in equation 4, we define a
weighted Monte Carlo routine enabling us to approximate in prin-
ciple any quantities of interest related to pðrAjdÞ (such as the mean,
variance, probability of a certain event, or the complete density) by
properly aggregating weighted samples from the prior of the target
variable. The next three subsections present the details of the ap-
proximations for the local rock-physical and geophysical likeli-
hoods, in addition to the proposed weighted Monte Carlo routine.

Local rock-physical likelihood

There is in general no simple description of the spatial distribution
of the rock-physical likelihood pðmjrÞ. To obtain a Gaussian approxi-
mation to the required local rock-physical likelihood pðmCjrBÞ, we
therefore take a flexible sampling-based approach. This approach only
requires that we are able to sample “pairs” ðmC; rBÞ from their joint
distribution. The objective is to use these samples to fit the best pos-
sible mean and covariance matrix functions in a Gaussian approxima-
tion of the form

p�ðmCjrBÞ ¼ NmC
ðμ�mC jrBðrBÞ;Σ�

mC jrBðrBÞÞ: (6)

Note that a Gaussian approximation to pðmCjrBÞ is less restric-
tive than the Gaussian approximation to the unconditional distribu-
tion of the geophysical properties pðmÞ used in Buland and Omre
(2003), Larsen et al. (2006), and related work. In principle, the
mean function μ�mC jrBðrBÞ and covariance function Σ�

mC jrBðrBÞ could
behave in completely unrestricted ways. In order not to make the
fitting procedure too complicated, we do, however, suggest to di-
vide the sampled pairs into K different nonoverlapping classes ac-
cording to some specified criterion on rB. Within each such class k,
separate mean functions μ�mC jrB;kðrBÞ are fitted by a regression pro-

cedure, and the resulting residuals ε 0 ¼ mC − μ�mC jrB ;kðrBÞ are used
to estimate a fixed covariance matrix Σ�

mC jrB;k for that class. Using

this procedure, the mean function has an unrestricted dependence on
the neighborhood variable rB, whereas the covariance matrix depends
categorically on the class k of rB. Hence, the criterion that divides the
samples into different classes should be chosen such that the depend-
ence structure within the influence variable mC is fairly stable.
Although a simple linear regression (least squares) method may be

used to fit μ�mC jrB ;kðrBÞ in the above procedure, we suggest using a
technique that allows for increased fidelity in more complex situa-
tions. Examples are multivariate adaptive regression splines (MARS;
Friedman, 1991), projection pursuit regression (Friedman and Stuet-
zle, 1981), neural networks (Cheng and Titterington, 1994), and gen-
eralized additive models (Hastie and Tibshirani, 1986). Flexibility is
essential here because it allows the approximated dependence on rB
to match that of the true model more closely. Also, the larger the
sample size the more stable the approximations become.
One strength of the sampling-based approach is that the distribu-

tion fit may be checked by standard multivariate normality tests
(Henze, 2002). If tests deem the Gaussian model acceptable, the ap-
proximations are guaranteed to be good. If not, one may attempt to
correct for the non-Gaussianity by using a more flexible regression

procedure, increase the number of classes, redefine the local subsets,
or reduce the influence of the outliers. The last option may for in-
stance be done by using a range spanning covariance estimation rou-
tine to estimate Σ�

mC jrB ;k as opposed to using the standard sample
covariance. Such a routine stretches the tails of the Gaussian model
by using an estimate of the covariance that spans broadly enough for
no sampled pairs ðmC; rBÞ to be very unlikely under the fitted model.
This method weakens the impact of deviations from the Gaussian
model’s dependence structure, and it reduces to the standard sample
covariance if the fit is already good. The suggested routine is outlined
in Appendix A.

Local geophysical likelihood

The global geophysical likelihood model typically takes the form
pðdjmÞ ¼ NdðGm;ΣεÞ, where G is a matrix of the appropriate di-
mension representing the linear dependence of the geophysical data
d on the geophysical properties m. That is

d ¼ Gmþ ε; (7)

with ε some error term with distribution Nð0;ΣεÞ. We seek an
approximation for the local geophysical likelihood pðdDjmCÞ, where

dD ≈ ~GmC þ ~ε; (8)

with ~G corresponding to G above, and ~ε ∼ Nð0;Σ~εÞ. However,
extracting the local part of equation 7 gives dD ¼ GDmþ εD, where
GD is the submatrix of G containing only the rows corresponding to
D. As illustrated upon introduction of the local subsets, C is chosen as
the region whose geophysical properties influence the local data (the
most). Hence, it is reasonable to approximate GDm by GD;CmC,
where GD;C contains the columns of GD corresponding to the cells
in C. The sought-after approximation is consequently obtained by
letting ~G ¼ GD;C and Σ~ε ¼ ΣεD in relation 8.
By a result in Appendix B, the established local rock-physical

and geophysical likelihood approximations give a fully specified
local likelihood approximation p�ðdDjrBÞ as in equation 5 with

μ�dDjrBðrBÞ ¼ GD;Cμ
�
mC jrB;kðrBÞ;

Σ�
dDjrBðrBÞ ¼ GD;CΣ�

mC jrB;kG
T
D;C þ ΣεD ;

(9)

for each rB in class k.

Weighted Monte Carlo routine

The final part of the framework concerns the weighted Monte
Carlo routine, which approximates inversion quantities of interest.
The routine relies on the integral in relation 4 with p�ðdDjrBÞ as
specified by equations 5 and 9. The routine goes as follows:

1) Sample a large number L of rB-variables from its prior pðrBÞ.
2) For each sample rðlÞB , compute the mean μ�dD jrBðr

ðlÞ
B Þ and covari-

ance matrix Σ�
dD jrBðr

ðlÞ
B Þ of the local likelihood approximation

from the formulae in equation 9.
3) For each sample rðlÞB , use the computed μ�dD jrBðr

ðlÞ
B Þ and

Σ�
dDjrBðr

ðlÞ
B Þ to evaluate the approximate local likelihood

p�ðdDjrB ¼ rðlÞB Þ.
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4) For each sample rðlÞB , extract rðlÞA and define unnormalized and
normalized weights by respectively

vðlÞ ¼p�ðdDjrB ¼ rðlÞB Þ and wðlÞ ¼ vðlÞP
L
j¼1v

ðjÞ : (10)

Each pair ðrðlÞA ; wðlÞÞ; l ¼ 1; : : : ; L may then be used to approxi-
mate in principle any quantity related to pðrAjdÞ. Some exam-
ples are:

1) μ�ðrAjdÞ ¼
P

L
l¼1 w

ðlÞrðlÞA .

2) p�ðrA ∈ SjdÞ ¼ P
L
l¼1 w

ðlÞ1frðlÞA ∈ Sg for some set S ∈ ð−∞;∞Þ,
where 1f·g is the indicator function.

3) For rA with discrete prior distribution pðrAÞ: p�ðrAjdÞ ¼P
L
l¼1 w

ðlÞ1frðlÞA ¼ rA×g.
4) For rA with continuous prior distribution pðrAÞ: p�ðrAjdÞ ¼P

L
l¼1 w

ðlÞKhðrA − rðlÞA Þ, where Kh is a scaled kernel density
function with bandwidth h (see, e.g., Silverman, 1986).

In some cases, it is fruitful to sample from the prior conditioned
on some criterion, rather than directly. This is especially the case
when the interesting parts of the sample space are a priori unlikely
or naturally separated in, e.g., a discrete and continuous part. Ap-
pendix C gives more details on this subject.

Full-region inversion

Two requirements must be met to use our approximation frame-
work. First, relation 8 must hold with a Gaussian error term ~ε, at
least approximately. Second, it must be possible to sample from
pðmC; rBÞ. Sampling from pðrBÞ is ensured by the latter requirement.
A major advantage of this framework first becomes apparent when

considering inversion of a larger region. As mentioned earlier, inver-
sion over a gridded region A is carried out by applying the presented
technique to each grid cellA ∈ A. This allows for parallelization that
under the following additional stationarity assumptions results in a
computationally efficient inversion procedure:

• B ¼ BðAÞ; C ¼ CðAÞ;D ¼ DðAÞ are all specified with rela-
tion to A only.

• pðdDðAÞ;mCðAÞ; rBðAÞÞ is stationary with respect to A.

These assumptions ensure that the local subsets followA when it
shifts from one cell to another and that the joint distribution of the
local subsets is independent of this shift. The mean and covariance
matrix functions of the local likelihood approximation in equation 9
thus hold for all A ∈ A and need to be computed only once. The
only part of the procedure that changes from one position to another
is the local geophysical data dD. Hence, global inversion of A may
be carried out by simply repeating steps 3 and 4 in the above Monte
Carlo routine for each cell A ∈ A. The stationarity assumptions are
not strictly required for our method to work out but are introduced
for computational speed-up. There is speed-up also if the assump-
tions hold only for certain parts of A.

Selecting local subsets

Selecting appropriate local subsets B; C, and D is essential in this
approximation framework. The dimension of these is an issue of
approximation accuracy versus computation speed, but it is not

necessarily so that choosing them to be larger independently of each
other will lead to a better approximation. A sensible and efficient
approximation framework thus requires careful selection of these
subsets.
By narrowing d to the local data dD, we limit the information

used for the local likelihood evaluation. Using too little data gives
a considerable loss of information, but using too much data leads to
infeasible computation. Also, including data with minor relation to
the target variable rA does not bring anything new. Selecting D
to be the region directly influenced by the geophysical properties
in A gives a reasonable trade off. For other geophysical models,
this region is not as easily determined as for seismic amplitude data.
That situation is discussed in Appendix D.
As mentioned earlier, C should be the region for which the geo-

physical properties influence the local data dD. Expanding C beyond
this would not improve the fit, but only make the task of fitting
p�ðmCjrBÞ more complex.
A common assumption within the geosciences is that all that

could be learned about local geophysical properties from rock prop-
erties are found in the local variables; that is, pðmX jrÞ ¼ pðmX jrX Þ
for any set of region cells X . Based on this relation, it is clear that it
would be optimal to set B equal to whatever C is set to. Because the
dimension of B is exactly the dimension of the integral that the
weighted Monte Carlo routine relies on, practicalities usually make
such a choice impossible. The reason is that to maintain the accuracy
of the Monte Carlo routine when the dimension of the integrand
increases, a larger number of prior samples, and hence likelihood
evaluations, is required. However, assuming that the Monte Carlo
accuracy is maintained (at a higher computational cost), it is likely
that expanding B would lead to a better approximation of the true
posterior and, consequently, more accurate predictions of the rock
properties and their uncertainties. If B is too small, important features
of the local data dD, which are “transferred” to the influence variable
mC, may be caused by characteristics of rock properties outsideB and
thereby not be associated with appropriate values of the target var-
iable rA.
The local subsets may also be selected by comparing the proper-

ties of samples from the local likelihood approximation p�ðdDjrBÞ
obtained for different choices of B; C andD to those of the true local
likelihood pðdDjrBÞ. Alternatively, confidence in certain local sub-
sets may be built based on application to a synthetic case in which
the resulting approximated posterior distribution can be compared
with the true rock properties. We rely on this latter approach for
selection of B in the upcoming data illustrations.

SYNTHETIC DATA TEST

In the next section, we will consider a 4D survey from the Sleip-
ner CO2 injection project as a real data example. We shall use that
case as a motivation in this synthetic example. The synthetic data
shall reflect a region similar to the Utsira Formation in the Sleipner
field offshore Norway, where CO2 has been injected for storage and
seismic base and monitor surveys have been conducted. The CO2 is
typically trapped underneath thin layers of shale within the forma-
tion or under the formation top. The main objective is to “map” the
CO2 based on the saturation in the region. Hence, we define the rock
property of interest r as the CO2 saturation at the time point of one
of the monitor surveys (herein for simplicity referred to as the sat-
uration), assuming no injection prior to the base survey. The geo-
physical properties m are defined as the change in the logarithm of
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the P- and S-wave velocity and density from base to monitor time.
Finally, d denotes the change in properly aligned seismic angle
gathers from base to monitor time.
In this synthetic example, we shall be content working with mod-

els and data specified on a gridded 2D region A of size 3500 m ×
280 ms (length × two-way traveltime [TWT]), where each of the
19,600 grid cells have size 25 m × 2 ms. We shall perform inver-
sion of synthetic geophysical data to saturation for the complete
region A. The synthetic case is constructed by specifying global
stochastic rock-physics and geophysical models in this region. Note
in particular that the stochastic rock-physics model involves also
other rock properties than the saturation r.
Let us first consider the rock-physics model. There are few re-

liable measurements of velocity and density from the injection well
(Rabben and Ursin, 2011). The problems with the logging are prob-
ably due to issues with the very loose sand in Utsira. The P-wave
velocity in brine-filled sand is slightly more than 2000 m∕s, and

the rock matrix in this region corresponds to loose sand. The
rock-physics model we use for the Utsira sand is consistent with
these data. In our model, we use a Reuss mix of the mineral point
and a high-porosity member constructed usingWalton’s model with
45% porosity (see, e.g., Mavko et al., 2009). The parameters and
corresponding uncertainty model for this rock-physics model are
given in Table 2, which also provides the temperature and pressures
used to derive the fluid properties. The rock-physics model is sim-
ilar to the model used by Arts et al. (2004), but a notable difference
is that we use the velocity and density for brine, which are compat-
ible with the most recent pressure and temperature measurements in
the formation (Batzle and Wang, 1992; Alnes et al., 2011). When
matching the observed velocity in Utsira, this gives softer sand than
is used in Arts et al. (2004). The effect of the saturation on geo-
physical properties is computed using fluid substitution, that is,
Gassmann’s equations (Mavko et al., 2009) where a homogeneous
fluid mix (Reuss) is assumed. Due to the nature of CO2 and the soft
rock at the Sleipner injection site, saturation is the main cause of
variability for the change in geophysical properties from base to
monitor time. This is illustrated in Figure 3, which displays samples
of brine- and CO2-saturated rocks from the rock-physics model,
overlaid on a rock-physics template.
The geophysical likelihood model is of the form described by

equation 7, i.e., Gaussian with linear mean function. The linear
multiplicand here is G ¼ WAD; W is a block diagonal matrix rep-
resenting the smoothing with a 25 Hz Ricker wavelet; A is the ma-
trix of weak-contrast coefficients for each of the offset angles 5°
(near), 20° (mid), and 35° (far) as defined by Aki and Richards
(1980); and D is a differential matrix producing contrasts of the
geophysical properties. The covariance matrix Σε for the error term
is block diagonal with independence between the different offsets,
and the standard deviations are 0.04 for near, 0.05 for mid, and 0.06
for far offset.
The synthetic saturation for our region of interestA is constructed

to mimic the high-saturation layers in the Utsira Formation. It con-
tains multiple layers with a flat top and variable thickness. In par-
ticular, 5% of the region cells possess saturation greater than 0.6.
The synthetic saturation and noisy geophysical data sampled from
the rock model are displayed in Figure 4. Note in particular that the
peak amplitude of the seismic data does not follow a flat top.
Let us now turn to the inversion, in which we will limit our ap-

proximations to include vertical dependence. We shall define a sto-
chastic prior model for the saturation, and otherwise we use vertical
analogs of the rock-physics and geophysical models described above
as the basis for our approximations. The prior model for saturation is
defined as a transformation of a Gaussian copula (Joe, 1997), which
models the effect that adjacent cells are more correlated than distant
ones. The marginal distribution in each cell has a point mass at zero
and a continuous distribution from 0 to 1. In each cell, the prior prob-
ability for the saturation being zero is 99%, whereas the saturation is
distributed as Beta(6, 1.5), as shown in Figure 5, when it is strictly
positive (because the distribution of saturation has a discrete and a
positive part, this example illustrates the applicability of our approach
to both these types of rock properties). Consult Appendix B for de-
tails on the beta distribution.
The Gaussian copula has a stationary exponential covariance

function with range parameter R ¼ 50 ms in the parametrization
CðhÞ ¼ expð−3jhj∕RÞ, where h is the vertical “distance” (in ms)
between two locations.

Table 2. Rock-physics model parameters. The mineral param-
eters have correlation 0.99 between properties. Details on the
two and four parameter beta distributions are given in
Appendix B.

Property Distribution

Mineral bulk modulus (GPa) N(35.4, 3.2)

Mineral shear modulus (GPa) N(27.3, 7.4)

Mineral density (g∕ccm) N(2.647, 0.008)

Brine bulk modulus (GPa) Fixed = 2.538

Brine density (g∕ccm) Fixed = 1.027

CO2 bulk modulus (GPa) Fixed = 0.065

CO2 density (g∕ccm) Fixed = 0.686

Coordination number Fixed = 7.3

Friction factor Beta(5.0, 0.8)

Porosity Beta4(2.0, 2.0, 0.27, 0.42)

Pore pressure (MPa) Fixed = 10

Effective pressure (MPa) Fixed = 10

Temperature (°C) Fixed = 36

Figure 3. Rock-physics template: The boundaries of the template
correspond to porosity of 40% and 30% and CO2 saturation of
0 and 1. The center lines of the template correspond to porosity and
CO2 saturation of, respectively, 35% and 0.5. For saturation, that
line is partly hidden close to the lower boundary of the template.
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Because we limit our approximations to only include vertical
dependence, the local subsets B; C, and D only include variables
within the same vertical profile as A. They are also all centered
inA. Specifically, we let D include 20 ms above and belowA, hav-
ing dimension 21, whereas C includes 44 ms above and below A,
having dimension 45. As we shall see shortly, B is selected on a
trail and error basis through comparison with the true synthetic
saturation.
In our approximations, we estimate p�ðmCjrBÞ by splitting the

sampled pairs ðmC; rBÞ into K ¼ 4 classes depending on whether
the saturation in the two boundaries of B (i.e., the shallowest and
deepest cells in B) are zero or strictly positive. The mean functions
μ�mC jrB ;kðrBÞ for each class k are estimated by a MARS procedure,
where generalized cross validation is used to specify the tuning
parameters in the regression. The covariance matrices Σ�

mC jrB ;k; k ¼
1; : : : ; 4 are estimated by the range spanning covariance estimation
routine in Appendix A.
Between 45,000 and 100,000 samples are used for each of the

K ¼ 4 classes to fit the approximate local rock-physical likelihood
p�ðmCjrBÞ. Because nonzero saturation occurs in only 1 out of 100
cells by direct sampling, it is beneficial to oversample positive rB.
This will give more robust approximations for the whole sample
space of the target variable rA. Hence, two sets of rB samples
(one conditioned on rA ¼ 0 and one conditioned on rA > 0) are
used in the weighted Monte Carlo routine (see Appendix C for fur-
ther details). This sampling procedure, with each of the two sets
being of size 105, will be used throughout the paper.
To fully specify the inversion, we must choose the size of B for

this synthetic case. (The chosen size will also be passed forward to
the upcoming real case.) We do this by pointwise comparing pre-
dictors derived from the local inversions with the true synthetic sat-
uration. For that comparison, and for the remainder of this paper, we
will use the approximated marginal posterior mean saturation in
each cell as a predictor for the true unknown saturation. Increasing
the dimension of B should in theory (on average) result in a closer
match between the truth and the approximation, represented by the
bias. At the same time, it increases the variability between the per-
formances of different sets of prior samples, represented by the
(Monte Carlo) variance. We define the optimal B as the one min-
imizing the mean squared error (MSE), which decomposes nicely
into squared bias plus variance. Empirical versions of squared bias,
variance, and MSE averaged over the cells in the full 2D region are
shown in Figure 6 for varying size of B and constant sample size —
when using the posterior mean as predictor. Note that the MSE is
computed on a cell-by-cell basis; hence, it penalizes any minor mis-
alignment in the predicted saturation severely. In terms of the bias
versus variance trade-off (i.e., MSE minimization), we deem B of
dimension 17 the optimal for the current sampling regime. That is,
the optimal B includes 16 ms above and below A. As seen from the
figure, the squared bias is fairly flat to the right of dimðBÞ ¼ 17.
This indicates that increasing the sample size further would not im-
prove the fit considerably. The slight increase in bias for the largest
dimensions is an indirect effect of the relatively small sample size.
Figure 7 shows the marginal posterior means for the chosen B

and explained sampling regime, along with its difference from the
synthetic truth. As seen from the figure, the posterior mean matches
the true saturation well over the complete 2D region, at thicker and
thinner layers of high saturation. Note the good positioning of the
top and base of high-saturation layers also when the layer thickness

is below the tuning thickness. As expected, the positioning of thin
layers far below the tuning thickness results in some misalignment
of the high-saturation layers. They are, however, still detected, and
vertical profile averages are generally well preserved. Compared
with using the prior directly without support of the data (MSE =
0.038), our framework reduces the empirical MSE almost an order
of magnitude (MSE = 0.0050). Also, the prior average saturation in

Figure 4. (a-c) Synthetic seismic difference data (near, mid, and far)
relevant for the 2D region of interest. (d) Generated synthetic sat-
uration at monitor time r for the complete synthetic 2D region.

Figure 5. Marginal prior distribution of positive saturation: A beta
distribution with shape parameters a ¼ 6 and b ¼ 1.5, having mean
0.8 and variance approximately 0.02.
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the region is 0.0080, whereas the posterior regionwise average is
0.0455. These should be compared with the regionwise average
of the true synthetic saturation, which is 0.0449. Thus, even if the
approach operates locally, it still gives information about bulk prop-
erties. These results are not only an outcome of our framework and
procedure, but they also depend on the statistical model and grid
being used. Because the same grid is used to generate the synthetic
case and perform inversion, potential bias caused by grid cells being
misaligned with high-saturation layers are not present in this syn-
thetic case. Also, the selection bias is not accounted for when the
same data are used to tune a parameter and present performance
results. However, the flat behavior of the MSE curve around the
minimum point in Figure 6 indicates that such selection bias is
insignificant here.
To properly evaluate the accuracy of our approximationmethod, the

approximated marginal posterior distributions should be compared
with the true posterior distribution. Because “exact” methods for

computing the posterior distribution are computationally extremely
costly, this is not feasible for the full 2D region. To accompany the
above evaluation and comparison with the actual synthetic satura-
tion, we do however evaluate the true posterior distribution in a sin-
gle vertical profile (positioned at 1625 m) for comparison with our
procedure. The true posterior for the vertical trace is obtained by
running a blockwise Metropolis Hastings MCMC scheme (Bolstad
[2009], chapter 6.3) with an independence sampler corresponding
to the conditional prior distribution. This “brute force”MCMC pro-
cedure required several days of CPU running time to provide reli-
able results — whereas our approach produced approximate results
within seconds. For this vertical profile, Figure 8 shows pointwise
80% credibility intervals (CI) (the range between P10 and P90),
posterior means and medians for the true posterior and our local ap-
proximation procedure with a few different sizes of B. Also plotted
are the seismic difference data and true synthetic saturation. The
figure illustrates the typical behavior for our method when varying
the size of B, while the sample size is kept constant. When B is too
small, the approximated posteriors are simplified too much. Increas-
ing the size of B increases the level of detail, but a too-large B gen-
erates unwanted noise with thin wrongly predicted high-saturation
layers and gives unstable results due to the relatively small sample
size. For the MSE-optimized procedure, where dimðBÞ ¼ 17, the
posterior mean, median, and the pointwise 80% credibility intervals
match those of the true posterior very well. This indicates that the
approximation method works as intended also on smaller scales.
Finally, we compare predictions from our procedure with the cor-

responding ones based on the frequently used Gaussian inversion
approach of Buland and Omre (2003). Because the approach of Bu-
land and Omre (2003) actually is a geophysical inversion approach,
we temporarily change our focus to prediction of the change in the
logarithm of the density ρ, instead of saturation. Figure 9 shows the
posterior means for the 2D region discussed above for both approxi-
mation methods along with the synthetic true change in log density.
As seen from the figure, the predictions based on our method are
more distinct and clear compared with the vaguer predictions pro-
vided by the Gaussian inversion. The latter perform poorly on thin
layers of reduced density, and also predict areas with a positive
change in log density not present in the synthetic data. Hence, our
method improves substantially upon Buland and Omre (2003) in
terms of prediction accuracy.

REAL DATA CASE

The Sleipner CO2 injection project aims at storing CO2 captured
from the gas production in the Sleipner field offshore Norway by
leading compressed CO2 down to the Utsira Formation through an
injection well. We consider geophysical data from a seismic 4D sur-
vey of this formation and aim at monitoring or mapping the CO2

based on the saturation. We concentrate on the changes from a base
survey in 1994 (before injection) and until a monitor survey in 2006.
Because the saturation is effectively zero everywhere prior to injec-
tion, the changes in saturation correspond to the amount at monitor
time. The geophysical data consist of changes in seismic AVO data
from base to monitor time for three different offsets. The data are
aligned using rms and pushdown data prior to difference computa-
tion. We concentrate on a west–east-directed 2D region intersecting
the injection well. The region spans more than 2900 m × 334 ms,
has a seismic sampling resolution of 25 m × 2 ms, and is positioned
approximately 800 m below sea level.

Figure 6. Empirical estimates of the MSE, squared bias, and Monte
Carlo variance are plotted for different dimensions of B in the syn-
thetic 2D case. These are computed based on five different prior sam-
pling seeds (with totally 2 × 105 samples) for each B centered in A.

Figure 7. (a) Inversion results for the synthetic 2D region shown
through approximated marginal posterior mean saturations in each
cell. (b) The difference between the true synthetic saturation and the
prediction in panel (a).
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The setup of the model to be approximated and its various param-
eters are essentially the same as for the synthetic data test, with the
exception of some parameter specifications for the geophysical like-
lihood pðdjmÞ. In the present case,W consists of 35, 30, and 25 Hz
Ricker wavelets for the near (12.5°), mid (25°), and far offsets (40°),
respectively. The frequency content of the wavelets was set to match
those in the seismic data. For near and far stacks, this was done based
on the common part of the base and monitor surveys in a region di-
rectly above the reservoir. This part has a slightly lower frequency
content than the individual parts, indicating a lower signal-to-noise
ratio at higher frequencies. Processing issues made such detailed
analysis impossible for the far stack. Hence, the far wavelet was
set only from the frequency content in the base survey, accounting
also for a high end frequency loss. The near and mid wavelets are
scaled by a factor two compared with the far offset. This was deter-
mined by analysis of the base data, which gave twice as strong a
signal for the near and mid stack than for the far — most likely
caused by survey and processing effects. The standard deviation of
the error term in the geophysical likelihood model is 0.5 for near and
mid offsets and 0.2 for far offset. This is larger than observed directly
above the reservoir, reflecting that there are larger alignment errors
and stronger amplitude effects in the target region than directly
above.
All other model parameters, local subsets, and other parts of the

inversion setup are the same as for the synthetic case. The optimal
size of the neighborhood variable established for the synthetic case
is used in the sampling. The seismic AVO data relevant for the 2D
region and the resulting marginal posterior means are shown in Fig-
ure 10. The results indicate several wide sections of increased sat-
uration, which seem to generally match well with the reflections
from the seismic data.
Our approach provides more than the best estimate. Figure 11

shows more detailed inversion results for a vertical profile near the
injection well, together with the seismic amplitudes of that profile.
The figure indicates that there are five main high-saturation layers
with tops approximately at vertical positions 60, 90, 110, 145–
160, and 190 ms. This matches well with a straightforward visual
interpretation of the reflections of the seismic amplitudes. The

approximate posterior uncertainty is small at the high-saturation areas
corresponding to the three shallowest and the deepest of these posi-
tions, indicating that the presence of these layers is fairly certain. On
the other hand, the contiguously wide pointwise 80% credibility in-
tervals reaching all the way down to zero for TWTs of 145–180 ms,

Figure 8. Seismic amplitudes, true saturation, and details of the true posterior and our approximation using different sizes of B in a vertical
profile of the synthetic data positioned at 1625 m. The 80% CI shows the pointwise range between the P10 and P90.

Figure 9. Comparison of predictions of changes in log density for
the synthetic 2D region. (a) Predictions (means) based on our method
with local subsets as above, (b) predictions (means) based on the
Gaussian inversion approach (Buland and Omre, 2003), and (c) true
synthetic change in log density.
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indicate larger uncertainty for the levels of saturation. Together with
the disagreement of the mean and median predictors, this suggests
that the presence and depth of one or two high-saturation layers
are highly uncertain within this range.
Boait et al. (2012) study the CO2 migration in the Utsira Forma-

tion after injection using seismic time-lapse data with several mon-
itor surveys, and they present a qualitative interpretation of the
horizons in a 2D region close to the injection point. The qualitative
interpretations match our profile inversion results very well by in-
dicating the same five layers. On a larger scale, the qualitative in-
terpretations also match our inversion results well. Some deviations
are, however, seen in an area slightly east of the injection well, and
in the deepest areas where the signals in our data are weak.

DISCUSSION

Our approach has connections to other general statistics-based
and geophysical-motivated approximation techniques. Similar to
our approach, the integrated nested Laplace approximation (INLA)
method of Rue et al. (2009) approximates parts of the model by
Gaussian distributions, uses their convenient properties, and solves
a lower dimensional final integral by a numerical routine. The
method does not involve local subset parameters, however. Those
Gaussian approximations are also applied to different parts of the
model than ours, and therefore require other types of assumptions
— typically being unrealistic within geoscience applications. Of
the existing geophysics types of techniques, the connection to Bu-
land et al. (2008) is perhaps the closest. Like us, Buland et al. (2008)
perform global inversion by focusing on one cell at a time and rely
on Gaussian approximations. However, they only consider the di-
rect behavior of the rock and geophysical properties in the cell
under current consideration, and not the spatial neighbors, which
is key in our framework. They do not require a Gaussian rock-physi-
cal likelihood (neither globally nor locally), but this also restricts the
applicability of their technique to discrete rock properties, such as
facies or lithology classes.
The overall procedure used in our framework can also be applied

when pðdDjrBÞ is approximated by a non-Gaussian distribution.
There are, however, several benefits of relying on Gaussianity.
Among them are the simple way that conditional distributions are
handled, the computational savings available when preevaluating
larger parts of the Gaussian distribution (under stationarity assump-
tions), and usage of the common assumption that the geophysical
likelihood pðdjmÞ is Gaussian with a linear mean function. The

Figure 10. (a-c) The three different offsets (near, mid, and far) of the
seismic AVO differences between base and monitor time relevant for
the real case 2D region. The near and mid offsets are scaled by a
factor two compared with the far offset. (d) Inversion results shown
through marginal posterior mean saturations for each cell in the
gridded 2D region of the real data case.

Figure 11. Seismic AVO data compared with the approximate mar-
ginal posterior distributions of saturation in a vertical profile close
to the injection well (west–east position 1475 m in the real case 2D
region).
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Gaussian restriction can, however, be relaxed without losing all the
beneficial properties. This is achieved by allowing the local geo-
physical likelihood pðdDjmCÞ and/or the local rock-physical like-
lihood pðmCjrBÞ to rather be approximated by Gaussian mixture
distributions. This increases the flexibility because it allows for
skewness and/or multimodal conditional distributions, which may
improve the accuracy of the procedure if Gaussianity is inappropri-
ate. This extension has the consequence that the local likelihood
approximation p�ðdDjrBÞ also becomes a Gaussian mixture. The
total number of mixture components is the product of the number
of mixture components of the two likelihoods. Because evaluation
of a Gaussian mixture likelihood with q mixture components is
computationally q times more expensive than evaluating a regular
Gaussian likelihood, there should, however, be substantial reasons
for including many extra levels of complexity. Another approach
would be to approximate, e.g., pðmCjrBÞ by the selection Gaussian
distribution of Rimstad and Omre (2014b), with the consequence
that p�ðdDjrBÞ also becomes selection Gaussian distributed. How-
ever, further investigations are required for such an extension.
Although the methodology of the framework is motivated by in-

version of single cells, the framework is not strictly restricted to this
situation. All theory and methodology work out even if A refers to
several cells or some weighted sum of these, and also if r corre-
sponds to two or more rock properties. The latter is handled simply
by sampling, say, the porosity and saturation jointly with the geo-
physical properties when approximating the local rock-physics like-
lihood in equation 6, and when sampling rock properties in the
Monte Carlo routine. Further, the local subsets B; C, and D are not
restricted to be contiguous and centered around cell A as illustrated
in Figure 2, even though that is the most natural choice. For some
type of applications (e.g., in seismic tomography with complex ray-
paths), it may be more appropriate to include scattered cells in B.
This would, however, call for a more comprehensive local subset
selection process.
Our approach does not require closed form expressions for the

rock properties’ prior distribution and the rock-physical likelihood,
neither globally nor locally. We only require that samples from the
local distributions are obtainable. This is advantageous in the fairly
common setting where it is hard to specify closed form expressed
models possessing the desired randomness features, but where sam-
pling-based model specifications are easier to put up.
As mentioned, our framework is well suited for parallelization on

multicore computers or graphics processing unit (GPU) accelera-
tors. For our data application, the methodology was straightfor-
wardly implemented in the statistical programming language R
(R Core Team, 2014). The complete inversion procedure for the
synthetic data test was run in parallel on a Windows-based laptop
with an Intel i7 2.6GhZ processor and four cores in less than half an
hour. This included the initial fitting procedure and the weighted
Monte Carlo routine for all the 19,600 individual cells. Because
no attempt was made on boosting this performance, there is still
room for a significant reduction in the computing time. The main
contributions would be a devoted implementation in a precompiled
language and massive parallelization on high-performance cores.
The mixing of the CO2 and brine is a frequently discussed topic.

As an alternative to the homogeneous mix that we use in our ap-
plications, patchy mixtures of fluids have been suggested (Ghaderi
and Landrø, 2009). For the real case, we also tested a simple model
for a patchy fluid mix. The patchy model was obtained by substi-

tuting the Reuss average with a Voigt average when deriving the
properties of the effective pore fluid. For the vertical profile of
Figure 11, this reduced the uncertainty in the high-saturation layers
and introduced the possibility of a low-saturated layer below the top
CO2 layer. Apart from this, the inversion results were very similar.

CONCLUSION

We have presented a general framework for approximate Baye-
sian inversion of geophysical data into rock properties. The meth-
odology approximates quantities directly related to the marginal
posterior distributions of the rock properties defining the Bayesian
inversion. The framework is well suited for parallelization, produc-
ing potentially very fast inversion results. The generality, paralleli-
zation properties, and mild assumptions of the approach should
make it attractive for a broad range of geophysical challenges in
reservoir characterization, monitoring, and exploration.
The issue of the dimensionality in Bayesian inversion was re-

duced by considering local behavior for all model components (rock
properties, geophysical properties, and geophysical data). This was
done by merging a Gaussian approximation to a local rock-physical
likelihood with a Gaussian approximation to a local geophysical
likelihood and then applying a weighted Monte Carlo routine to
compute the approximate quantities relevant for the inversion.
The synthetic data test showed that our local approach delivers

acceptable errors compared to the much slower MCMC solution;
and at least in this case, it is substantially more precise than a fre-
quently used Gaussian inversion approach. For the real data case,
the inversion results matched well with a previously published
qualitative interpretation of the region.
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APPENDIX A

RANGE SPANNING COVARIANCE MATRIX

Consider estimation of a range spanning covariance matrix based
on n residuals ε1; ε2; : : : ; εn of dimension q, with both n and q
fairly large. Let δi ¼ εTi Σ̂

−1εi (with Σ̂ ¼ f1∕ðn − 1ÞgPn
i¼1 εiεTi

being the standard sample covariance matrix) be a measure of
how likely εi is. When the residuals are Gaussian, it follows from
arguments involving the central limit theorem that the distribution
of δi is approximately Gaussian with mean q and variance 2q.
Clever use of Jensen’s inequality and the moment generating func-
tion of the Gaussian distribution then shows that the maximum of n
such Gaussian variables is bounded by qþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q logðnÞp

. The range
spanning estimation method consists of checking whether any of
the δi exceed this bound. If some do, we reestimate a covariance
matrix Σ̂max representative for the most extreme residuals, and
we cleverly merge that with Σ̂. Here, Σ̂max is computed by taking
the sample covariance of the most extreme residuals only, while still
making sure sufficiently many are included to secure stability. The
merged covariance matrix is denoted by Σ̂span and is required

to span both Σ̂max and Σ̂ in the sense that both Σ̂−1 − Σ̂−1
span and
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Σ̂−1
max − Σ̂−1

span are positive semidefinite, i.e., that xTΣ̂−1
spanx ≤

maxfxTΣ̂−1x; xTΣ̂−1
maxxg for all x. This is obtained by ensuring that

the inequality holds for all generalized eigenvectors of Σ̂max with
respect to Σ̂. After reestimation and merging, Σ̂ is set equal to
Σ̂span and δi is recomputed. The procedure is repeated until no re-
siduals are very large compared with the bound.

APPENDIX B

DISTRIBUTIONS

Result: Merging two Gaussian distributions

Let xjy ∼ NxðHy;Σ0Þ for some nonrandom matrix H and
y ∼ Nyðμ;ΣÞ. Then, x ∼ NxðHμ;HΣHT þ Σ0Þ.

Proof: The two relations are equivalent to x ¼ Hyþ ε0,
y ¼ μþ ε, where ε0 ∼ Nε0ð0;Σ0Þ independently of ε ∼ Nεð0;ΣÞ.
Hence, x ¼ Hðμþ εÞ þ ε0 ¼ Hμþ ε 0, where ε 0 ¼ Hεþ ε0 ∼
Nε0ð0;HΣHT þ Σ0Þ, which again is equivalent to x ∼ NxðHμ;
HΣHT þ Σ0Þ.

Two- and four-parameter beta distributions

The (two-parameter) beta distribution Betaða; bÞ has shape
parameters a; b and continuous probability distribution function
f2ðy; a; bÞ ∝ ya−1ð1 − yÞb−1; y ∈ ½0; 1�. It has mean a∕ðaþ bÞ
and variance ab∕½ðaþ bÞ2ðaþ bþ 1Þ�.
The four-parameter beta distribution Beta4ða; b; c; dÞ is a Be-

taða; bÞ-distribution scaled and shifted to match the support ½c; d�.
Its probability distribution function is scaled by d − c and shifted
by c: f4ðy;a;b;c;dÞ∝f2ððy−cÞ∕ðd−cÞ;a;bÞ;y∈ ½c;d�; its mean
is ½aðd − cÞ�∕ðaþ bÞ þ c; and its variance is ½abðd − cÞ2�∕
½ðaþ bÞ2ðaþ bþ 1Þ�.

APPENDIX C

WEIGHTED MONTE CARLO WITH
CONDITIONAL SAMPLING

In some cases, one may wish to apply the weighted Monte Carlo
routine when conditioning on the event that rA is contained in some
part or block of the sample space. That may in particular be the case
when the prior distribution for rA has discrete and continuous parts
because such parts are best treated separately. The technique may
also be used to oversample a priori unlikely parts of the sample
space of pðrAÞ to increase the overall accuracy of the weighted
Monte Carlo routine.
Choose the conditions, say, Ej; j ¼ 1; : : : ; J, such that their cor-

responding blocks on the sample space form a partition, i.e., that the
blocks are nonempty disjoint sets whose union is the sample space
itself. Assume further that the enumerated routine defined in the
weighted Monte Carlo section is carried out J times, once with prior
samples conditioned on each of the Ej. Denote, respectively, the
extracted rA value and corresponding unnormalized and normalized
importance weights for the lth prior sample in the jth run by rðl;jÞA ,
vðl;jÞ and wðl;jÞ, l ¼ 1; : : : ; Lj, j ¼ 1; : : : ; J. Quantities conditioned
on Ej may be computed analogous to the unconditional ones with
weights and samples replaced by those for the jth condition. For

instance, p�ðrAjd; EjÞ ¼
PLj

l¼1 w
ðl;jÞ1frðl;jÞA ¼ rAg for discrete distribu-

tions, and p�ðrAjd; EjÞ ¼
PLj

l¼1 w
ðl;jÞKhðrA − rðl;jÞA Þ for continuous

distributions. Further, the posterior probability of each condition Ej

may be computed by

p�ðEjjdÞ ¼
pðEjÞ 1

Lj

PLj

l¼1 v
ðl;jÞ

P
J
i¼1 pðEiÞ 1

Li

PLi
l¼1 v

ðl;iÞ (C-1)

Finally, the unconditioned approximated posterior distribution
may be computed by p�ðrAjdÞ ¼

P
J
j¼1 p

�ðrAjd; EjÞp�ðEjjdÞ.
Other unconditioned quantities may be computed similarly using
the derived quantities and posterior probabilities for each condition
p�ðEjjdÞ, j ¼ 1; : : : ; J, or directly via p�ðrAjdÞ.

APPENDIX D

RESOLUTION THEORY FOR SELECTING D IN
GENERAL GEOPHYSICAL PROBLEMS

The formulation we have used in the paper considers the geo-
physical relation of equation 7, that is, d ¼ Gmþ ε, with the matrix
G given by the geophysical relations. This is indeed intended be-
cause these types of problems are what we aim to solve. However,
this general form may be limiting when we consider selection of the
local subset D defining the local data dD. For AVO data, the influ-
ence region may be bounded fairly easily, but when working with, e.
g., the rms velocities of Buland et al. (2011), the influence region
typically span all data below the position considered. For these cases,
it is useful to consider resolution theory. Left multiplying both sides
of equation 7 by GTðGGTÞ−1 gives d 0 ¼ G 0mþ ε 0, where G 0 ¼
GTðGGTÞ−1G is the standard resolution kernel, and d 0 and ε 0
are, respectively, rescaled data and noise. The resolution kernel will
in general be much more locally focused. If the matrix ðGGTÞ−1 is
not invertible, one could include a ridge term before inverting or use
some other type of pseudo inversion method to ensure stability of the
inverse. It is also possible to perform a preinversion to focus the en-
ergy in the problem. This is done by left multiplying both sides of
equation 7 by Σ̂mGTðGΣ̂mGT þ ΣεÞ−1, where Σ̂m is an estimate of
the covariance matrix of the geophysical properties and Σε is the
covariance matrix of the errors.
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