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Abstract
Factor models have become a common and valued tool for understanding the risks associated with an investing
strategy. In this report we describe Exabel’s factor model, we quantify the fraction of the variability of the returns
explained by the different factors, and we show some examples of annual returns of portfolios with different factor
exposure.
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Introduction
In the context of factor investing, ‘factors’ are thought of as
characteristics shared by a group of securities and acting as
the drivers of their returns. While macroeconomic factors
such as interest rates, economic growth rates, etc. capture
broad risks across asset classes, the model considered here is
based on fundamental factors such as each company’s country
and industry membership and financial characteristics (size,
book value, earnings, etc.), which help explain returns and
risks within asset classes.

Factors can be used to construct indices with increased
exposure to a particular factor. Some factor indices have
been demonstrated to earn persistent premiums over long time
periods, but they often exhibit substantial cyclicality over short
time horizons and may underperform for periods up to several
years. Within a factor model, the main role of the factors is
to help construct a low dimensional, interpretable model for
the co-movement of a large number of asset returns. The risk
associated with this set of returns – and of portfolios based on
it – can then be decomposed into a risk component explained
by the respective factor exposures and an idiosyncratic risk.
The latter is specific to each security and assumed independent
from the factor-based risks and across different securities.

In this document we describe the details of Exabel’s factor
model. Further, we provide some figures which give an idea
about how much of the variability of returns across all con-
sidered companies is explained by this factor model, and we

finally calculate the annual returns of a few portfolios with in-
creased exposure to a particular factor group to illustrate how
these portfolios would have performed over the last ten years.
Results of a more in-depth analysis of the factor model’s
ability to quantify the risks associated with different portfo-
lios is provided in a separate document entitled ‘Performance
evaluation of volatility estimation methods for Exabel’.

1. Definition of the factor model
Denote by rk the return of a company k ∈ K := {1, . . . ,K}
on a given day. We call this set K of investible companies
the estimation universe. At the time of writing, Exabel’s
estimation universe contains K = 28 629 companies from all
over the world1.

With a factor model we would like to explain the returns
of all companies in K as well as possible through a small
number of interpretable factors, i.e. attributes of a company
which appear to influence its return. The factor loading X∗k of
company k quantifies its exposure to a particular factor. Three
different types of factor loadings are considered in our model:

• Style-loadings X s
k , s ∈ S (set of style factors)

• Country-loadings Xc
k , c ∈ C (set of countries)

• Industry-loadings X i
k, i ∈ I (set of industries)

Using a cross section regression model, we then want to esti-
mate (separately for each day) factor returns fs,s ∈ S, fc,c ∈
C, and fi, i ∈ I together with the overall market return fm:

rk = fm + ∑
s∈S

X s
k fs + ∑

c∈C
Xc

k fc +∑
i∈I

X i
k fi + εk, (1)

where εk ∼N (0,σ2
k ) is the residual term that accounts for

the fraction of the return rk not explained by the company’s
exposure to the different factors.

1Note, however, that for some of these companies data might not be
available for the entire evaluation period, so on a particular day the effective
estimation universe Keff used in the cross section model can be much smaller.
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Figure 1. Number of companies in each country and associated share of the total market capitalization within the set of
countries in the estimation universe for which all factor loading data was available on 1.1.2021.

Style factors
The style loadings quantify characteristics of a company such
as quality, growth, or value which have the potential to explain
why portfolios with above or below average exposure to these
factors have outperformed others. A wealth of different fac-
tors has been proposed in the literature over the last decades,
but in order to ensure good interpretability of Exabel’s factor
model, it focuses on 11 style factors which were found to
be particularly useful in explaining the differences in returns
across the estimation universe. Table 1 lists these factors, or-
ganised into 8 factor groups proposed by MSCI [1] to give an
even more intuitive overview. Details and exact mathematical
definitions of these factors are given in appendix A.

Table 1. The 11 style factors in Exabel’s factor model,
categorized into the 8 factor groups proposed by MSCI.

Factor group Factors

Volatility Beta, Volatility
Yield Dividend yield
Quality Profitability
Momentum Long and short term momentum
Value Book value/price, Earnings yield
Size Size
Growth Sales growth
Liquidity Liquidity

In order to reduce collinearity with fm and to enable mean-
ingful interpretation, the style factor loadings are constrained
to be market cap-centered, i.e.

∑
k∈Keff

mckX s
k = 0, for all s ∈ S,

where mck is the market capitalisation of company k. If the
style loadings are also standardized, the corresponding factor
returns allow one to quantify to what degree a company’s re-
turn on that day can be attributed to its exposure to a particular
factor.

Country factors
The country loadings represent a company’s affiliation with
one or several countries. If a company is unequivocally affili-
ated with one country c, then Xc

k is equal to 1 for this country
and 0 for all others. If a company is affiliated with multiple
countries, this is indicated by values between 0 and 1 which
sum up to 1. Fig. 1 shows all countries represented in the
effective estimation universe Keff on 1.1.2021 (i.e. all com-
panies in K for which all factor loading data is available at
this date) and depicts the number of companies from each
country, as well as each country’s share of the total market
capitalization.

Industry factors
The industry loadings represent a company’s affiliation with
one or several industries. If a company is unequivocally affili-
ated with one industry i, then X i

k is equal to 1 for this industry
and 0 for all others. If a company is affiliated with multiple
industries, this is indicated by values between 0 and 1 which
sum up to 1.

Table 2. The 14 different types of industries considered in
Exabel’s factor model.

Business Services Consumer Services
Consumer Cyclicals Energy
Finance Healthcare
Industrials Non-Energy Materials
Consumer Non-Cyclicals Technology
Telecommunications Utilities
Other Non-Corporate

Constraining the country and industry returns
In order for all factor returns to be identifiable, both country
and industry factor returns are constrained as follows

∑
c∈C

mcc fc = 0, ∑
i∈I

mci fi = 0,
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where mcc = ∑k∈Keff
mckXc

k is the total market cap for country
c and likewise for mci. Together with the constraints imposed
on the style factors, these constraints allow an interpretation
of fm as the market cap-weighted average return of the mar-
ket, while the factor returns fc,c ∈ C, fi, and i ∈ I quantify
deviations of a company’s return from the market return fm
explained by its country and industry membership.

2. Variance explained by the factor model
In order for the different factors to be useful for modelling the
co-movement of stock returns, they must be able to explain a
considerable fraction of the variability of returns across the
estimation universe. A common measure to quantify how
well a model can explain the variability seen in the response
variable is the coefficient of determination, here defined as

R2 = 1− SSres

SStot
(2)

where SSres is the residual sum of squares of the factor model,
and SStot is the sum over the squared returns of all companies
to which this model was fitted.

Since separate models are fitted for each date, we would
normally obtain an R2 value for each date and would have to
summarize all of these values across time. However, we feel
that it is especially important that the model performs well on
days with large stock price movements, and this information
gets lost when daily R2 values are calculated. Therefore, we
first aggregate the denominator and the enumerator in (2)
separately across time such that SSres is now the residual sum
of squares both across all companies and across the evaluation
period, and likewise for SStot. Then, we calculate a single R2

value via (2). Days with large stock price movements thus
have an increased influence on the overall sums of squares,
while the larger magnitudes of the respective daily sums would
cancel each other out.

A market cap-weighted portfolio is a natural baseline for
any factor investing strategy, and given the large number of
(often small) companies in K, it makes sense to emphasize
a good fit of the factor model to companies with a larger
market cap. In the cross sectional regression model (1) this is
achieved by assuming the variance of the residual term εk to
be proportional to the inverse market cap, i.e. σ2

k = σ2/mck.
This results in a weighted least squares fit to the factor loading
data with weights proportional to each company’s market
cap. Consequently, when we calculate SSres and SStot in (2),
the calculation is also performed with (square root) market
cap-weighted returns. Four different R2-based metrics are
calculated:

1. Both 1-day and 90-day2 returns are evaluated

2. Both in-sample and out-of-sample evaluation is per-
formed. The former fits the factor model to all compa-
nies in Keff while the latter performs a 10-fold cross

2here defined as the sum of 1-day returns over a 90-day period

validation where Keff is split into 10 folds of approx-
imately equal size. The factor model is fitted to 9 of
the folds and evaluated on the remaining one, and this
process is repeated such that each fold is left out once
for evaluation.

First, to get an idea about the relative importance of the
market factor and the style, country, and industry factors,
respectively, we show results for a reduced factor model based
on just a subset of these factors:

Table 3. R2 values for reduced factor models which use only
the market factor, or, the market factor and either all style, all
country, or all industry factors.

in-sample cross-validated

1-day 90-day 1-day 90-day

Market only 0.171 0.227 0.169 0.225
Market + Style 0.280 0.339 0.264 0.326
Market + Country 0.339 0.335 0.318 0.314
Market + Industry 0.215 0.295 0.200 0.282

Information about the companies’ country membership
seems particularly useful to explain the variability of their
returns across Keff. The style factors are equally important for
explaining the 90-day returns but slightly less important for
the 1-day returns. Information about a companies’ industry
membership also succeeds in explaining variability beyond the
overall market movement, especially for the 90-day returns.

Next, we take a closer look at the importance of the indi-
vidual style factors. As a reference, we now use a baseline
model which uses the market factor and all country and indus-
try factors, and we investigate how much additional variability
can be explained by adding one style factor at a time:

Table 4. R2 values for reduced factor models which use the
market factor, all country and industry factors, and one
additional style factor at a time.

in-sample cross-validated

1-day 90-day 1-day 90-day

no style factors 0.377 0.395 0.347 0.367
Beta 0.389 0.415 0.358 0.388
Book value/price 0.381 0.403 0.350 0.375
Dividend yield 0.382 0.401 0.350 0.373
Earnings yield 0.380 0.401 0.349 0.372
Sales growth 0.380 0.399 0.349 0.371
Liquidity 0.381 0.402 0.349 0.371
Short term moment. 0.383 0.399 0.352 0.371
Long term moment. 0.387 0.405 0.356 0.376
Profitability 0.380 0.401 0.348 0.372
Volatility 0.387 0.410 0.356 0.382
Size 0.381 0.399 0.349 0.370

Beta, volatility and (to a slightly lesser degree) long term
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momentum stand out as style factor that perform particularly
well across all four metrics when it comes to explaining vari-
ability of returns across Keff. All style factors add additional
information relative to the baseline. That information, how-
ever, is not independent across the different factors because
the underlying financial characteristics are correlated. We
therefore show another set of results where now the baseline
is the full factor model with all style, country, and industry
factors, and the effect of removing one style factor at a time is
investigated:

Table 5. R2 values for the full factor model and reduced
factor models in which one style factor at a time is omitted.

in-sample cross-validated

1-day 90-day 1-day 90-day

all factors incl. 0.415 0.447 0.376 0.412
-Beta 0.410 0.438 0.371 0.403
-Book value/price 0.414 0.445 0.375 0.411
-Dividend yield 0.414 0.446 0.375 0.411
-Earnings yield 0.414 0.445 0.375 0.411
-Sales growth 0.414 0.445 0.375 0.411
-Liquidity 0.414 0.445 0.376 0.412
-Short term moment. 0.412 0.445 0.374 0.411
-Long term moment. 0.411 0.443 0.372 0.409
-Profitability 0.414 0.445 0.376 0.411
-Volatility 0.412 0.444 0.374 0.410
-Size 0.413 0.445 0.374 0.411

Comparison with Table 4 shows that the contribution of
each style factor on top of all remaining factors is substantially
reduced compared to the scenario where just a single style
factor is included in the factor model. Beta and long term
momentum provide the largest benefit, while other factors
like liquidity provide little or no additional information that is
quantifiable within the 3-digit rounding precision used in this
table. The latter were still included in the factor model since
all of the style factors on our list (Table 1) have a distinct in-
terpretation, are widely used in the context of factor investing,
and have a strong theoretical foundation behind them. The
results in Table 5 show, however, that it becomes increasingly
difficult to add factors which provide truly independent in-
formation. Therefore, and to maintain good interpretability,
we have refrained from adding additional style factors to our
list. Several alternatives to the ones listed in Table 1 were
considered, the associated R2 values and our rationales for not
including them are provided in a separate document.

3. Examples of factor-based portfolios
To illustrate how creating a portfolio with increased exposure
to a particular factor can affect that portfolio’s performance,
we compare the returns of a portfolio consisting of the largest
(by market cap) 500 US companies, weighted proportionally
to their market cap, with portfolios constructed as

Value: a subset of the 125 companies with the largest ’Book
value/price’ and ’Earnings yield’ factor loadings3

Low size: a subset of the 125 companies with the smallest
size (by market cap)

Momentum: a subset of the 125 companies with the largest
’Short term momentum’ and ’Long term momentum’
factor loadings

Quality: a subset of the 125 companies with the largest ’Prof-
itability’ factor loadings

Yield: a subset of the 125 companies with the largest ’Divi-
dend Yield’ factor loadings

Low volatility: a subset of the 125 companies with the low-
est ’Volatility’ factor loadings

Growth: a subset of the 125 companies with the largest
’Sales growth’ factor loadings

Liquidity: a subset of the 125 companies with the largest
’Liquidity’ factor loadings

The 125 companies within those subsets are again weighted
proportionally to their market cap. The weights of the market
cap portfolio and the factor-based portfolios are adjusted at
the beginning of each month according to the updated figures
for market cap and factor loadings.

Fig. 2 depicts the cumulative returns of the ’Growth’ port-
folio and shows that during the 2011 - 2020 period this port-
folio would have outperformed the market cap portfolio with
the 500 largest companies. The differences are especially
pronounced during the period of the stock market recovery
after the Coronavirus crash of 2020. The portfolios depicted
in Fig. 2 mimic those that would be obtained with portfolios
based on the S&P 500 and the S&P 500 Pure Growth index, re-
spectively, and so the patterns of the cumulative return curves
are very similar to those presented in [2].

The relative performance of the factor-based portfolios
varies during the economic cycle. The table in Fig. 3 shows
annual returns for each calendar year from 2011 to 2020 for
the factor-based portfolios described above. The average per-
formance over the 10-year period is also shown and calculated
as

r10y =

(
2020

∏
y=2011

(1+ ry)

) 1
10

−1

where ry denotes the annual return in year y. We note that
while there is no guarantee that a particular factor exposure
is beneficial over a given time period, the results in Fig. 3 are
in agreement with the asset pricing literature in that over ex-
tended time periods, many factors are able to earn a premium.
In any case, awareness of the their portfolios’ exposures can
help investors make more informed investment decisions.

3ranks are first calculated separately for the two factors, then a ranking of
the average ranks of those two components is used to select the top 125 ’Value’
companies. The same procedure is used for the ’Momentum’ portfolio.
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Figure 2. Cumulative returns of a portfolio consisting of the largest 500 US companies and a portfolio consisting of the subset
of the 25% companies with the largest ’Growth’ factor loading.

A. Style factor definitions
We provide a brief explanation and definition of the 11 style
factors used in Exabel’s factor model. Since the factor load-
ings are defined individually for each company, we drop the
subscript k, which was used above to indicate the dependence
on the company. Several factor loadings are calculated from
data during a certain time period T, so we add a subscript t
to indicate dependence on time, e.g. we now write rt for the
return on date t. We denote by t0 the date index at which the
factor loading is (re-)calculated.

All factor loadings are updated monthly, based on the most
recent available data. Data which is only available quarterly
or semi-annually is forward filled for up to six months. The
values from the calculations detailed below are normalized by
a robust scaler which maps the 25th percentile to −1 and the
75th percentile to 1. Subsequently, the normalized values are
clipped at ±3 and market cap-centered.

Beta
This factor measures to what degree the movements in the
price of a particular stock are explained by movements in the
market. We calculate it by regressing the (overlapping) 7-day
returns rt,7d of each company during the last 364 days on the
7-day return of the NASDAQ Global Index r̄t,7d over the same
time period:

rt,7d = α +β r̄t,7d + εt

The intercept parameter α is not used any further, while the
slope parameter β defines our factor loading. A large value
indicates that a company’s return is strongly correlated with
the overall market return, whereas a small value suggests
that the movements of this company’s stock price are largely
independent from the market.

Volatility
This factor measures the magnitude of the fluctuations in
the stock price movements. We calculate it as the standard
deviation of daily returns over the last 91 days:

DStD =

√√√√ 1
91 ∑

t∈T

(
rt −

1
91 ∑

t∈T
rt

)2

,

where T := {t0−91, . . . , t0−1}. A stock with large volatility
is a riskier investment with a higher probability for both large
gains and large losses.

Dividend yield
This factor loading is calculated as the ratio of dividends (over
the last year) per share to the share price:

DtP =
dividends per share

price per share
.

A larger dividend yield is often associated with mature com-
panies while small, faster growing companies tend to pay a
lower average dividend. It should also be noted that falling
share prices entail a higher dividend yield if the dividend is
kept constant.

Profitability
A company’s profitability is here measured as the ‘return on
average assets’, i.e. the ratio of its net income to total assets:

ROA =
net income
total assets

.

This ‘quality’ factor thus quantifies how efficiently a company
uses its assets to generate earnings.
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Figure 3. Annual returns (in %) of portfolios that emphasize different factors. Years in which a factor based portfolio
outperformed the market cap portfolio are highlighted in green, years of underperformance are highlighted in purple. Darker
colors indicate more pronounced differences in performance.

Momentum
Momentum factors quantify trends in the stock’s returns. In
Exabel’s model two different momentum factors are included
which capture short term (‘STM’) and longer term (‘LTM’)
trends, respectively. If we denote the share price at time t by
Pt , the two momentum loadings are defined as

STM =
Pt0−1−Pt0−29

Pt0−29
, LTM =

Pt0−29−Pt0−365

Pt0−365
.

Book value/price
This ‘value’ factor measures a company’s book value relative
to its market valuation (share price), i.e.

BtP =
book value

price per share
.

Earnings yield
Another ‘value’ factor, this one measures a company’s earn-
ings per share (EpS) relative to its market valuation, i.e.

EtP =
earnings per share

price per share
.

When available, the analysts’ consensus estimate of the EpS
for the next year is considered in addition to the company’s
reported EpS for the prior 12 months, and it is given three
times the weight of the reported EpS. If such estimate is not
available, only the reported EpS is used for the calculation of
the factor loadings.

Size
This factor quantifies the company’s size, given here as the
logarithm of its market capitalization (mc):

LgMC = log10(mc).

Its relevance is based on the finding that companies with
smaller market cap tend to have higher risk adjusted returns
during certain periods of the economic cycle [3].

Sales growth
This factor aims to capture a company’s growth prospects.
We calculate it in the same way as described by S&P in the
construction of their S&P 500 Pure Growth index [2]:

• when sales data St from three years prior are available

SGr =
St0−1−St0−1095

St0−1095
/ 3

• when sales data St from two years prior are available

SGr =
St0−1−St0−730

St0−730
/ 2

• when sales data St from only year prior are available

SGr =
St0−1−St0−365

St0−365

Liquidity
A company’s liquidity is here quantified as the logarithm of
the average daily share turnover over the last 91 days

STO91d = log

(
1

91 ∑
t∈T

Vt

SOt

)
,

where T := {t0−91, . . . , t0−1}, Vt is the trading volume and
SOt is the number of shares outstanding on date t. The latter
is the aggregate number of shares that a corporation has issued
to investors.
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