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► Assume a model 𝑓 𝒙 ∈ ℝ that predicts some unknown outcome based on a 

set of features 𝒙 = (𝑥1, … , 𝑥𝑀)

► We apply the predictive model for a specific input 𝒙 = 𝒙∗, reaching a certain 

prediction 𝑓 𝒙∗

► Individual prediction explanation

▪ Want to understand how the different features, or types of features affect this 

specific prediction value 𝑓 𝒙∗

▪ I.e. explain the predicted outcome in terms of the input 𝒙 = 𝒙∗ (local explanation)

► Frameworks…

▪ LIME

▪ Anchors 2

Prediction explanation

▪ Shapley values

▪ PDP/ICE

▪ PredDiff

▪ Counterfactual explanations (CE)



► Response 𝑦: Loan defaulted or not

► Features 𝒙 = (𝑥1, … , 𝑥𝑀): Info about the applicant, income, other loans, previous defaults, 

transactions history

► Predictive model 𝑓: Model trained to predict probability of default: 𝑓 𝒙 ≈ Pr 𝑦 = default 𝒙

► Loan approved if 𝑓 𝒙 < 𝑐 = 0.1
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Counterfactual explanations – by example
Default prediction model as a basis for automatic processing of loaning applications

CASE: Peter has features 𝑥∗, and got his loan 

application rejected as 𝑓 𝑥∗ = 0.3 > 𝑐

Question: What can Peter do to receive a loan?

CE solution: Examples of (minimal) changes in 

features which approves the application
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Counterfactual explanations – criteria 

We measure “cost” by 

1. # features changed

2. Gower distance



Optimization based methods

► Minimize loss functions (wrt e) of type

▪ Often require differentiable f

▪ Not necessarily on-manifold 

▪ Categorical features more troublesome

Heuristic search-based methods

► Optimization with heuristic search strategies

Instance-based methods

► Finds counterfactuals by searching for instances in a reference distribution/dataset
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Existing CE methods
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MCCE – the method

A 3-step procedure 

1. Model the distribution of mutable features, given the immutable features and the decision

2. Generate a large number of samples from the modelled distribution with the specified fixed 

features 𝑥∗𝑓

3. Discard the invalid samples, and choose the one “nearest” to 𝑥∗
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MCCE – step 1: Model
We utilize

► Then fit 𝑞 − 1 decision trees to 

𝑿𝑖
𝑚 ∼ 𝑿𝑓 , 𝑌′, 𝑿1

𝑚, … , 𝑿𝑖−1
𝑚 , 𝑖 = 2,… , 𝑞, 

using CART or Conditional Inference Trees (ctree), where 

the observations in the end nodes are stored
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MCCE – step 2: Generation
To generate one sample from 𝑋𝑚|𝑋𝑓 = 𝑥∗𝑓, 𝑌′ = 1, we:

1. Follow 𝑥∗𝑓 down the first tree and make one sample ෤𝑥1
𝑚 from the observations in the end node

2. For 𝑖 = 2,… , 𝑞:

▪ Follow 𝑥∗𝑓, ෤𝑥1
𝑚, … , ෤𝑥𝑖

𝑚down the 𝑖-th tree, and make one sample ෤𝑥1
𝑚 from the observations 

in the end node

Repeat the procedure K times do obtain

a synthetic dataset 𝑫 with K samples



9

MCCE – step 3: Post-processing
Filter the data set 𝑫 to obey our four criteria

► C1 & C2 already satisfied

► Most samples satisfies C3, remove the others

► Choose the sample closest to 𝒙∗. We do this by

▪ Determine the smallest number of samples being changed, and

remove those with more changes (L0)

▪ Amongst the remaining, chose the one minimizing the

Gower distance (L1)
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Experiments – setup 

► Real data sets

► Generate CE to explain predictions from a test set

▪ Use MCCE + 6 other on-manifold methods

► Compare the methods in terms of performance measures

▪ L0, L1, feasibility, violation, success, computation time



► Binary classification of financial distress or not

► 10 cont features

► 150 000 obs

► Use 3-layer ANN for modelling
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Experiments – Give me some credit



► Binary classification of income >= $50 000

► 4 cont + 8 cat features

► 49 000 obs

► Use 3-layer ANN for modelling
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Experiments – Adult
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Conclusion

MCCE

► Models both features and the decision to ensure on-manifold and valid CE

► Conditional sampling guarantees to not violate immutable features

► Relies on trees which handle continuous/discrete/categorical features

► Breaks up tasks into 3 step – each step can easily be altered to specific needs

► Easy to implement

► Outperforms competing methods in terms of both accuracy and speed


