
www.nr.no

MCCE

Monte Carlo sampling of valid and realistic
counterfactual explanations

Martin Jullum (jullum@nr.no)

Internseminar SAMBA 09.03.23

► Assume a model 𝑓 𝒙 ∈ ℝ that predicts some unknown outcome based on a

set of features 𝒙 = (𝑥1, … , 𝑥𝑀)

► We apply the predictive model for a specific input 𝒙 = 𝒙∗, reaching a certain

prediction 𝑓 𝒙∗

► Individual prediction explanation

▪ Want to understand how the different features, or types of features affect this

specific prediction value 𝑓 𝒙∗

▪ I.e. explain the predicted outcome in terms of the input 𝒙 = 𝒙∗ (local explanation)

► Frameworks…

▪ LIME

▪ Anchors 2

Prediction explanation

▪ Shapley values

▪ PDP/ICE

▪ PredDiff

▪ Counterfactual explanations (CE)

► Response 𝑦: Loan defaulted or not

► Features 𝒙 = (𝑥1, … , 𝑥𝑀): Info about the applicant, income, other loans, previous defaults,

transactions history

► Predictive model 𝑓: Model trained to predict probability of default: 𝑓 𝒙 ≈ Pr 𝑦 = default 𝒙

► Loan approved if 𝑓 𝒙 < 𝑐 = 0.1

3

Counterfactual explanations – by example
Default prediction model as a basis for automatic processing of loaning applications

CASE: Peter has features 𝑥∗, and got his loan

application rejected as 𝑓 𝑥∗ = 0.3 > 𝑐

Question: What can Peter do to receive a loan?

CE solution: Examples of (minimal) changes in

features which approves the application

4

Counterfactual explanations – criteria

We measure “cost” by

1. # features changed

2. Gower distance

Optimization based methods

► Minimize loss functions (wrt e) of type

▪ Often require differentiable f

▪ Not necessarily on-manifold

▪ Categorical features more troublesome

Heuristic search-based methods

► Optimization with heuristic search strategies

Instance-based methods

► Finds counterfactuals by searching for instances in a reference distribution/dataset

5

Existing CE methods

6

MCCE – the method

A 3-step procedure

1. Model the distribution of mutable features, given the immutable features and the decision

2. Generate a large number of samples from the modelled distribution with the specified fixed

features 𝑥∗𝑓

3. Discard the invalid samples, and choose the one “nearest” to 𝑥∗

7

MCCE – step 1: Model
We utilize

► Then fit 𝑞 − 1 decision trees to

𝑿𝑖
𝑚 ∼ 𝑿𝑓 , 𝑌′, 𝑿1

𝑚, … , 𝑿𝑖−1
𝑚 , 𝑖 = 2,… , 𝑞,

using CART or Conditional Inference Trees (ctree), where

the observations in the end nodes are stored

8

MCCE – step 2: Generation
To generate one sample from 𝑋𝑚|𝑋𝑓 = 𝑥∗𝑓, 𝑌′ = 1, we:

1. Follow 𝑥∗𝑓 down the first tree and make one sample ෤𝑥1
𝑚 from the observations in the end node

2. For 𝑖 = 2,… , 𝑞:

▪ Follow 𝑥∗𝑓, ෤𝑥1
𝑚, … , ෤𝑥𝑖

𝑚down the 𝑖-th tree, and make one sample ෤𝑥1
𝑚 from the observations

in the end node

Repeat the procedure K times do obtain

a synthetic dataset 𝑫 with K samples

9

MCCE – step 3: Post-processing
Filter the data set 𝑫 to obey our four criteria

► C1 & C2 already satisfied

► Most samples satisfies C3, remove the others

► Choose the sample closest to 𝒙∗. We do this by

▪ Determine the smallest number of samples being changed, and

remove those with more changes (L0)

▪ Amongst the remaining, chose the one minimizing the

Gower distance (L1)

10

Experiments – setup

► Real data sets

► Generate CE to explain predictions from a test set

▪ Use MCCE + 6 other on-manifold methods

► Compare the methods in terms of performance measures

▪ L0, L1, feasibility, violation, success, computation time

► Binary classification of financial distress or not

► 10 cont features

► 150 000 obs

► Use 3-layer ANN for modelling

11

Experiments – Give me some credit

► Binary classification of income >= $50 000

► 4 cont + 8 cat features

► 49 000 obs

► Use 3-layer ANN for modelling

12

Experiments – Adult

13

Conclusion

MCCE

► Models both features and the decision to ensure on-manifold and valid CE

► Conditional sampling guarantees to not violate immutable features

► Relies on trees which handle continuous/discrete/categorical features

► Breaks up tasks into 3 step – each step can easily be altered to specific needs

► Easy to implement

► Outperforms competing methods in terms of both accuracy and speed

