
www.nr.no

Global model-agnostic*
explanation methods

Martin Jullum and Annabelle

Redelmeier

April 8th, 2022

Decomposition of model

NoYes

Plotting based

• Functional ANOVA

• Generalized

functional ANOVA

Quantify change to loss function

Yes No

Overview of global explanation methods

• Partial dependence (PD)

plots

• Marginal (M) plots

1. Accumulated local effect

(ALE) plots

Yes No

• Magnitude of

regression coefficients

• Mean Abs of

Individual SHAP

values

• Friedman’s H-statistic

Quantify change in model

Yes No

2. Permutation importance

3. SAGE

• LossSHAP

• CXPlain

• L2X

• INVASE

4. Mean Decrease

impurity for additive

trees (Gini index++)

Simplification of model

Yes No

• Single feature

contribution

• Global

surrogate

models

A closer look at 4 methods

1. ALE Plots

▪ Visualizing the effects of predictor variables in black box supervised learning models by Daniel W. Apley

and Jingyu Zhu, 2020

2. Permutation Feature Importance

▪ Random Forests by Breiman, 2001

▪ All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class

of prediction models simultaneously by Aaron Fisher, Cynthia Rudin, and Francesca Dominici, 2018

3. SAGE

▪ Understanding global feature contributions with additive importance measures by Ian Covert, Scott

Lundberg, and Su-In Lee, 2021

4. Mean decrease impurity for additive trees
▪ Understanding variable importances in forests of randomized trees, Louppe et al. (2013)

▪ Elements of Statistical Learning, Ch 10.13, Hastie et al. (2001)

▪ Classification and Regression Trees, Ch 4+5, Breiman et al. (1984)

(1) Accumulated local affects (ALE) plots

► Imagine a bike rental

problem where y = #

bike rentals per hour.

One sentence explainer: The ALE

function value for a given feature is

the predicted response as a

function of Xi, when all other features

are averaged out.

Apley and Zhu, 2020

2nd order
ALE plots
► The higher the peaks, the

more hour and weather
situation have an
influence on # bike rentals.

► If good weather, the bike
rental peaks are
pronounced in the morning
and evening rush hour.

► If bad weather the peaks
are at the same time (but
less pronounced)

good

weather

bad

weather

Inspiration for ALE comes from PD and M plots

The PD function of X1 shows the

marginal effect X1 has on the

predicted outcome of the model.

Problem?

In practice:
1. Divide X1 into n segments.
2. For each segment, calculate avg

model prediction over the

marginal distribution of X2

Bad at extrapolating

The M function fixes the

extrapolating problem by replacing

marginal w/ conditional dist.

In practice:
1. Divide X1 into n segments.
2. For each segment, calculate avg

model prediction over the

conditional distribution of X2

Problem?

Estimate combined effect

Inspiration for ALE comes from PD and M plots

The ALE function fixes the conflation issue by

taking differences 𝑓 𝑧1,𝑢𝑝𝑝𝑒𝑟, 𝑥2 − 𝑓(𝑧1,𝑙𝑜𝑤𝑒𝑟 , 𝑥2)

In practice:
1. Divide X1 into n segments.
2. For each segment, calculate avg

local affect 𝑓 𝑧1,𝑢𝑝𝑝𝑒𝑟, 𝑥2 −

𝑓(𝑧1,𝑙𝑜𝑤𝑒𝑟 , 𝑥2)

3. Take cumsum from N1(1) to

N1(i).

Summary: ALE plots

► Estimate the average prediction value for a given feature (or two features) value.
▪ Diagnose obvious relationship problems b/w Y and feature

► Advantages
▪ ALE plots handle dependent features.

▪ ALE plots are faster to compute than PD plots.

► Disadvantages
• Second-order ALE estimates have a varying stability across the feature space which are not visualized.

• Second-order effect plots can be a bit hard to interpret, as you always have to keep the main effects in mind. It is

tempting to read the heat maps as the total effect of the two features, but it is only the additional effect of the

interaction.

8

(2) Permutation Feature Importance

One sentence explainer: A

feature’s importance is tied to

how model’s error changes

when the feature’s information

is destroyed.

In practice: feature importance of 𝑋1

1. Calculate model loss: 𝐿𝑜𝑠𝑠(𝑋)

2. Randomly set 𝑋𝑖,1 = 𝑋𝑗,1 for 𝑖 = 1,… , 𝑛

3. Calculate 𝐿𝑜𝑠𝑠 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 𝑋

4. Calculate
𝐿𝑜𝑠𝑠 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 𝑋

𝐿𝑜𝑠𝑠(𝑋)
or 𝐿𝑜𝑠𝑠 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 𝑋 − 𝐿𝑜𝑠𝑠(𝑋)

Breiman, 2001

When 𝑋1 info destroyed:
model error ↑ : 𝑋1 important

model error ↓/same: 𝑋1 not important

Robust Permutation Feature Importance

Less accurate

More accurate

Set of models

Model reliance

on X1

A
c

c
u

ra
c

y

minimum accuracy

f1

f10

f7

f17
f13 f5

f94

𝐿𝑜𝑠𝑠(𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 𝑋)

𝐿𝑜𝑠𝑠(𝑋)

Fisher, Rudin, and Dominici, 2018

Robust Permutation Feature Importance

Less accurate

More accurate

Set of models

Model reliance

on X1

Worse loss

when

permute X1

No change

in loss

when

permute X1

A
c

c
u

ra
c

y

minimum accuracy

f1f10

f7

f17

f13

f5

f94

𝐿𝑜𝑠𝑠(𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 𝑋)

𝐿𝑜𝑠𝑠(𝑋)
How large is this spread?

Fisher, Rudin, and Dominici, 2018

Summary: Permutation feature importance

► The increase in model error when the feature’s information is destroyed.

► Advantages

▪ The importance measure automatically takes into account all interactions with other features

◦ Also a disadvantage because the importance of the interaction between two features is included in the

importance measurements of both features.

▪ No retraining of the model.

► Disadvantages

▪ Linked to a specific choice of error of the model.

▪ You need access to the true outcome.

▪ Permutations are random.

▪ If features are correlated, PFI can be biased by unrealistic data instances.

▪ Adding a correlated feature can decrease the importance of the associated feature by

splitting the importance between both features.

13

(3): SAGE
(Shapley Additive Global importancE)

► Covert, Lundberg & Lee (NeurlPS, 2020)

► Using Shapley values to decompose the
expected loss of the model on the
features

Shapley values

One sentence explainer: How much the

expected loss is reduced by including each

of the features to the model (averaged over

whether the other features are included or

not)

Shapley values

► Concept from (cooperative) game theory in the 1950s

► Used to distribute the total payoff to the players

► Explicit formula for the “fair” payment to every player 𝑗:

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑆 ! 𝑀 − 𝑆 − 1 !

𝑀 !
𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

𝑣 𝑆 is the payoff with only players in subset 𝑆

► Several mathematical optimality properties

𝑀

Shapley value explanations

► Individual prediction explanation (local)
▪ SHAP: Popularised by Lundberg & Lee (2017)

◦ Players = features (𝑥1, … , 𝑥𝑀)
◦ Payoff = difference between prediction to mean prediction 𝑓 𝒙∗ − E𝐗[𝑓 𝑿]

◦ Contribution function: 𝑣 𝑆 = 𝑣𝑙,𝑆 𝒙𝑆
∗ = E𝑿ഥ𝑆

𝑓 𝑿 𝑿𝑆 = 𝒙𝑆
∗

◦ Marginal contributions: 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆 = E𝑿𝑆∪𝑗 𝑓 𝑿 𝑿𝑆∪𝑗 = 𝒙𝑆∪𝑗
∗ − E𝑿ഥ𝑆

𝑓 𝑿 𝑿𝑆 = 𝒙𝑆
∗

► Whole model explanation (global)
▪ SAGE: Covert, Lundberg & Lee (2020)

◦ Players = features (𝑥1, … , 𝑥𝑀)
◦ Payoff = Difference between expected loss with constant model (𝑓𝑐 𝑥 = c = E𝐗[𝑓 𝑿])

and full model: E𝑌[𝑙 𝑐, 𝑌] − E𝑿,𝑌[𝑙(𝑓(𝑿), 𝑌)]

◦ Contribution function: 𝑣 𝑆 = E𝑌 [𝑙 𝑐, 𝑌] − E𝑿𝑺,𝑌[𝑙 𝑣𝑙,𝑆 𝑿𝑆 , 𝑌]

◦ Marginal contributions: 𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆 = E𝑿𝑺,𝑌[𝑙 𝑣𝑙,𝑆 𝑿𝑆 , 𝑌] - E𝑿𝑆∪𝒋,𝑌[𝑙 𝑣𝑙,𝑆∪𝑗 𝑿𝑆∪𝑗 , 𝑌]

Estimating the expectations in SAGE

► Need to estimate

𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆 = E𝑿𝑺,𝑌[𝑙 𝑣𝑙,𝑆 𝑿𝑆 , 𝑌] - E𝑿𝑆∪𝒋,𝑌[𝑙 𝑣𝑙,𝑆∪𝑗 𝑿𝑆∪𝑗 , 𝑌]

▪ Estimate the 𝑣𝑙,𝑆 𝒙𝑆 = E𝑿ഥ𝑆
𝑓 𝑿 𝑿𝑆 = 𝒙𝑆 using E𝑿ഥ𝑆

[𝑓 𝑿 ҧ𝑆, 𝒙 ҧ𝑆] and

approximate it by sampling rows of 𝑿 ҧ𝑆 from the training set

▪ Sample from the training set to estimate the outer expectation E𝑿𝑺,𝑌 by

sampling full rows 𝑿, 𝑌 from the training set

► Algorithm for computing the Shapley values is based on previous work by

Strumbelj & Kononenko (2010)

Properties of SAGE

► 𝜙𝑗 = Reduction in expected loss caused by

including feature 𝑗 in the model (averaged

over whether the other features are included

or not)

► σ𝑗𝜙𝑗 = E𝑌 𝑙 𝑐, 𝑌 − E𝑿,𝑌 𝑙 𝑓 𝑿 , 𝑌

► 𝜙𝑗 = 0 => No change in model performance

change by feature 𝑗

“Similar” methods
► LossSHAP

▪ A local explanation method which decomposes 𝑙(𝑓(𝒙∗), 𝑦) for a given
𝒙∗and 𝑦, instead of the usual 𝑓(𝒙∗)

▪ SAGE is the mean of lossSHAP over the dataset
◦ Computing global explanations with SAGE directly is faster as we don’t

need to compute precise lossSHAP values for every pair (𝒙∗, 𝑦).
◦ IMO they oversell their SAGE-algorithm as what they do is essentially

to compute lossSHAP for sampled data using a single S.

► Feature ablation and permutation features
▪ Also look at differences in expected loss by simulating removal of a

feature like SAGE, but they don’t consider multiple feature subsets
through Shapley values – only consider removal from the full model

▪ Feature ablition
◦ Simulates removal of a feature by re-training the model

▪ (One version of) permutation features
◦ Simulates removal of a feature by permuting the input value

Summary SAGE

► Uses Shapley values to decompose the expected loss of the model onto

the features

► Advantages

▪ Theoretical foundation

▪ Generalizes several other methods

► Disadvantages

▪ Author’s implementation (shap in pyhton) does not account for

feature dependence

▪ Computationally costly (at least if accounting for dependence)

20

(4) Mean decrease impurity (MDI) for additive trees

► Consider a trained tree model

▪ Each split aims at minimizing a loss/«impurity»

measure

▪ Importance for feature j = weighted sum of

decrease in impurity due to a split in feature j

▪ Importance scores typically scaled to sum to 1

► Random forest and boosted trees

▪ Similar to single trees, but sums over all trees

before scaling

One sentence explainer: What proportion

of the performance increase is due to splits

in the different features

MDI mathematical definition

► Impurity decrease at node t

▪ 𝑝𝐿 , 𝑝𝑅 are the proportion of samples in the left and right split

► Importance of feature 𝑋𝑚:

▪ 𝑝(𝑡) is the proportion of samples reaching node t

► Typically 𝐼𝑚𝑝 𝑋𝑚
∗ =

𝐼𝑚𝑝(𝑋𝑗)

σ𝑗 𝐼𝑚𝑝(𝑋𝑗)

MANY variations: impurity measures

► Impurity measure used to perform splits
in tree models/random forest

▪ Classification: Missclassification
error, Gini index or cross-entropy

▪ Regression: MSE

► Boosted trees algorithms (xgboost,
lightgbm, catboost etc) splits in
other ways, often an approximation
to some given loss
▪ Importance typically defined based

on the approximated loss

MANY variations: scaling

► ESL Ch 10.13 and the Xgboost implementation (total gain)

▪ does not seem to include the 𝑝(𝑡) to weight the performance

increase by their position in the tree

► ESL suggest using the squared impurity decrease

instead Δ𝑖2 𝑠, 𝑡 , taking the sum over the trees, and then

the square root before scaling to 1

MANY variations: Close relatives

► Breiman (1984)’s original idea for single tree

▪ Measure improvement in surrogate split instead to avoid problem

with “masked features”

◦ Masking is less of an issue for random forest/boosting

► XGBoost’s «average gain»

▪ Average performance increase when feature j is used (instead of

total performance increase)

► Mean Decrease accuracy (MDA) for random forest:

▪ Measure performance increase in out-of-bag-samples

25

Summary MDI

► MDI assigns the performance increase by every split to the feature performing the split

► Interpretation of 𝑀𝐷𝐼𝑗: Proportion of the model’s total performance increase which is due

to feature j

► Advantages

▪ Works for and is available in almost all tree-based modelling implementations

► Disadvantages

▪ Dependence between features is only accounted through the random sampling in

the trees – no importance is shared between dependent features

▪ Lots of variations, difficult to know exactly what is implemented

▪ Not a model-agnostic method

▪ Theoretical properties not well studied

▪ Importance biased towards high-cardinality features
26

Comparing methods
What we get and what we miss!

ALE plots Permutation feature importance (PFI) SAGE Mean decrease impurity (MDI)

What the

explanation tells

us

• How the fitted model prediction is

changed as one or two features

are changed: Accounts for effects

of other features by averaging them

out

• How much the training

performance decreases if we

did not observe certain

features: Simulates dropping one

feature at a time

• How much the training

performance decreases if

we did not observe certain

features: Accounts for and

averages over whether

other features are observed

or not.

• How central the different

features are to reach a

good fit this specific fitted

model.

What the

explanation does

not include

• Joint effects of many features:

Pairwise effects OK, but more

difficult to visualize

• Stability of the effects: How much

the effect varies with the features

that are averaged-out

• Importance shared with other

features: Only one feature is

permuted at once, keeping the

rest fixed

• Dependence awareness:

Standard version permutes

features independently

• Dependence awareness:

When measuring expected

changes in performance,

dependence is ignored (in

implementation)

• Exact answer:

Approximations are

required, especially in high-

dimensions

• Indirect importance: The

importance is not shared

among highly dependent

features unless the model

put’s equal weight on them

• Importance for non-tree-

models: The method only

works for tree-based

models.

Simulations

► X1 = X2 ~ Uniform(0, 1) + Normal(0, 0.05)

1. Linear model: Y = X1 + X2
2

► (X1, X2, X3) ~ Normal(0, low corr)

2. Linear model: Y = X1 + X2 + 2X3

3. Tree model Y = tree(X1 , X2, X3)

► (X1, X2, X3) ~ Normal(0, high corr)

4. Linear model: Y = X1 + X2 + 2X3

5. Tree model Y = tree(X1 , X2, X3)

How do global explanations change

with different models and feature

dependence?

Simulations

True linear model: Y = X1 + X2
2

ALE plots

X1 = X2 ~ Uniform(0, 1) + Normal(0, 0.05)

Equation contribution from both x1 and x2 Almost identical SAGE values

Simulations

True linear model: Y = X1 + X2 + 2X3

ALE plots

𝐶𝑜𝑣 =
1 0 0
0 1 0.1
0 0.1 1

(X1, X2, X3) ~ Normal(0, Cov)

Simulations

True linear model: Y = X1 + X2 + 2X3

ALE plots

𝐶𝑜𝑣 =
1 0 0
0 1 0.8
0 0.8 1

(X1, X2, X3) ~ Normal(0, Cov)

Simulations

True tree model: Y = tree(X1, X2, X3)

ALE plots

𝐶𝑜𝑣 =
1 0 0
0 1 0.1
0 0.1 1

(X1, X2, X3) ~ Normal(0, Cov)

ALE plot does not agree that x3 is most important

sd = 0.350

sd = 0.525

sd = 0.275

Simulations

True tree model: Y = tree(X1, X2, X3)

ALE plots

𝐶𝑜𝑣 =
1 0 0
0 1 0.8
0 0.8 1

(X1, X2, X3) ~ Normal(0, Cov)

std = 0.348

std = 0.350

std = 0.624

All agree that x3 is most important

