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Prediction explanation

>

Assume a model f(x) € R that predicts some unknown outcome based on a
set of features x = (x4, ..., xp)

We apply the predictive model for a specific input x = x*, reaching a certain
prediction f(x*)
Individual prediction explanation

=  Want to understand how the different features, or types of features affect this
specific prediction value f(x*)

=  |l.e. explain the predicted outcome Iin terms of the input x = x* (local explanation)
Frameworks...
LIME =  Counterfactual explanations -  PredDiff

Anchors - Explanation Vectors . Shapley values



Prediction explanation — by example

» Carinsurance
Response y: Insured crashed or not

Features x = (x4, ..., xy): Data about the
iInsured, his/her car and crashing history

Predictive model /. Model trained to predict
probability of crash: f(x) = Pr(y = yes|x)

» Prediction explanation

Why did a guy with features x* get a
predicted probability of crashing equal to
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Shapley values

» Concept from (cooperative) game theory in the 1950s
» Used to distribute the total payoff to the players

» Explicit formula for the “fair” payment to every player j:
ISIt(AM] =S| —1)! .
b= ). T (25 U )~ v()
seM\ {j} |

v(S) is the payoff with only players in subset S

» Several mathematical optimality properties /\




Intuition behind the Shapley formula

MM

Game with 3 players



Shapley values for taxi sharing -
Costs: $3/mi 7‘\

v({R,B,G}) = (4+ 6+ 2)mi *$3 = $36
v({}) = $0

v({R}) = 4mi = $3 = $12

v({B}) = (5 + 2)mi = $3 = $21
v({G}) = 5mi * $3 = $15

v({R,B}) = (4+ 6)mi *$3 = $30
v({R,G}) = (4 + 6+ 2)mi * $3 = $36
v({B,G}) = (5+ 2)mi = $3 = $21

dr =5 (v((R, B, GD=v({B, G)) + 2 (v{R, B = v((BY) + 2 (v({R, GD= v({GD) + 5 (v{RD- v({ D) = $14
s =z (v({R, B, 6D~ v({R, G})) + < (v({R, BHN- v({RY)) + < (v({B, 6D~ v({G)) + z (v({(BN- v({})) = $11
¢ =z (v({R, B,GD= v((R, BY)) + < (v({R, 6D~ v{RY)) + < (v({B, 6D~ v({BN) + z (v({GH- v({ }) = $11




Shapley values for prediction explanation

» Approach popularised by Lundberg & Lee (2017)

Players = features (x4, ..., xp;)
Payoff = prediction (f (x*))
Contribution function: v(S) = E[f(x)|xs = xg] 7 xg
Properties
bo+ Tijt1; = f(x7) $o = f(x)
fx) 1l x X;, x; Same contribution
implies ¢; =0 implies ¢; = ¢;

» Interpretation of ¢;: The prediction change caused by observing the value
of x; — averaged over whether the other features were observed or not



Example of Shapley value explanation

» Consider a model f(x) trained to predict a fair price
of a car insurance based on the following features x:

. Owner’s age, owner’s gender, type of car, time since the
car was registered, number of accidents the last 5 years

Shapley value prediction explanation

id: 2, pred = 229.9 id: 1, pred = 123.5
Gender = Man = # of accidents = 3 = _

none = Gender = Woman =

- - @
Type of car = Porsche 5 none = -

©

Age =30 = D Age =55 =

Time since registration = 1.5 = Type of car = Buick = I
#of accidents =1 = Time since registration = 3.2 =
[ | I [ [ [ I I
-100 0 100 200 -100 0 100 200

Feature contribution



Two main challenges

1. The computational complexity in the Shapley formula is of size 2M
S|t (M| —|S| —1 .
b=y ) (v(s 0 ()~ v(5))

M]|!
SEM\ {j} IM]
o Approximate solutions may be obtained by using a finite sample of subsets S
(KernelSHAP; Lundberg & Lee, 2017)

2.  Estimating the contribution function

v(S) = E[f(X)|xs = x5] = [ f(x5,x)p(xs|xs = x5)dxg

o Lundberg & Lee (2017) Xg
Approximates v(S) = [ f(xs x5)p(x:)dxs,
Estimates p(x:) using the empirical distribution of the training data
Monte Carlo integration to solve the integral

This assumes the features are independent!

7%




Two main challenges

2.  Estimating the contribution function

v(S) = E[f(®)lxs = x5] = [ f(x5 x)p(xs|xs = x5)dxs

X
o Lundberg & Lee (2017) xs/ 7 Xs
- Approximates v(S) = [ f(xg x5)p(xs)dxs, \
Estimates p(xz) using the empirical distribution of the training data
Monte Carlo integration to solve the integral

This assumes the features are independent!




Consequences of the independence assumption

» Requires evaluating f(xs, xs) at potentially unlikely or illegal combinations of

xz and xs
» Example 1 » Example 2
Number of transactions to = Age:17
Switzerland: 0O - Marital status: Widow
Average transaction amount . Profession: Professor

to Switzerland: 100 €

11



Estimating v(S) properly

Artificial Intelligence v (S) —3 [f (x) |xS — x;]

Volume 298, September 2021, 103502

Explaining individual predictions when features are

= J f(xs, x)p(xs|xs = x5)dxg

dependent: More accurate approximations to Shapley values ™

Kjersti Aas*, Martin Jullum, Anders Lgland

DE GRUYTER

gnhostic idea:

Depend. Model. 2021; 9:62-81

Kjersti Aas*, Thomas Nagler, Martin Jullum, and Anders Lgland

Explaining predictive models using Shapley | Pair copylas
values and non-parametric vine copulas

p(xslxs = x5) Ina
aroper way

+

e Carlo integration to
approximate integral:

1 K
v(S) = I Z f(zs, x%)
"Department of Mathematics, University of Oslo k=1

*Frye et. al (2020) briefly outline a VAEAC approach

CD-MAKE 2020: Machine Learning and Knowledge Extraction pp 117-137
Explaining Predictive Models with Mixed Features Usinl
Shapley Values and Conditional Inference Trees

Authors

Annabelle Redelmeier ,Martin Jullum , Kjersti Aas

arXiv:2111.13507v1 [stat.ML] 26 Nov 2021
Using Shapley Values and Variational Autoencoders to

Explain Predictive Models with Dependent Mixed Features

Lars Henry Berge Olsen*!, Ingrid Kristine Glad!,
Martin Jullum?, and Kjersti Aas?
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Approaches to estimate and
sample from p(xzs|xs = x¢)

1. Continuous features: Assume p(x) is Gaussian N (i, X)

Estimate u, X

Gaussian distribution

Compute conditional means and
covariances to obtain analytical
expression for

p(xs|xs = x5)

Sample from that Gaussian
distribution




Approaches to estimate and
sample from p(xs|xe = x¢) e —_—

2. Continuous features: Assume p(x) is a Gaussian copula

Transform each x; to u; ~ U[0,1]
with inverse empirical CDF

v

Transform each u; to v; ~ N(0,1)

v

00 02 04 06 08 1.0

Obtain analytical expression for
the Gaussian distribution

pv(vS_‘le - 17;)

v

Estimate the correlation XV of (vq, ..., vy)

Sample from p,(vs|vs = ve)
+ transform back to original scale




Approaches to estimate and
sample from p(xzs|xs = x¢)

3. Continuous features: Use an empirical (conditional) distribution which weights
the training observations (xz) by their proximity to xg:

Gaussian kernel on distance as weight

ws(z*, xl) = exp (_Ds(m*,mé)ﬁ)

Mahalanobis distance to x

S8 2052

v

Approx p(xs|xs = x5) by the empirical

ws (T, a:%)

distribution with weight S (2 1)
on each training i=115 s s
observation x; 15




Approaches to estimate and
sample from p(xzs|xs = x¢)

4. Continuous features: Estimate the dependence structure with a pair copula
and weight the training observations using this construction

Transform each x; to u; ~ U[0,1]
with inverse empirical CDF

!

Define wq(xe,xs) = ¢(us, us)/c(us) as
the dependence structure when
conditioning on x.

/

For each S, estimate
the dependence T
structure ¢(ugs, ug) with ~

a non-parametric pair . G
copula

Approx p(xs|xs = x5) by the empirical
wg(a::;, a:%)

distribution with weight
on each training

observation x;

TNtrain
D i ws

(x, )

16




Approaches to estimate and
sample from p(xzs|xs = x¢)

5. Mixed data: Use a multivariate decision trees as empirical distribution

For each 5, fit a multivariate
decision tree* to response y = x¢
based on x.

*We use conditional inference trees

Approx p(xz|xs = x¢) by the
empirical distribution of the
training observations x% in the
terminal node of x; = x:

17



Approaches to estimate and
sample from p(xzs|xs = x¢)

6. Mixed data: Use an variational autoencoder with arbitrary conditioning (VAEAC)

Fit a VAEAC to all conditional distributions
;—-------;-55“‘-’9*’-9-' --------------- 5 For each S:
. ; T 1. Feed the masked encoder
Input I E z 20 . * . —~-
& - s BN OIOIOROYAIO with x5 (masking 5)
o O O %) 2. Generate latent variables z
v | & O ’ 0 D 3. Feed z to the decoder and
© , 9 use it to generate samples
;:I:IIIZII:?BISIZIIIIII:IIIIII:IIIIII:III% _.Diveir(gLence E_ _______________________ ;I:e_______i Sampling xlg
@ o 5 >
ot | 7 ohe o 5@ 4. Use x; as samples from
n_/ R I = ! R A *
‘@ N ‘/\ py(2es, S) = iSampIingg () ‘ ro(zs|z, @s,8) = Samples p(x§|x5 - xS)
A N iU Ty Nd(z|p¢,diag[o-i])i § @ O O o} aN(mgmg,diag[o%]);
Qle O I = | = @ 1 0 I —
asi | (1) I
© : |
"""""" [Masked Encoder| =~ e Decoder |




When to use the different approaches

» Trade-offs between speed and accuracy
» Performance depends on data type and dependence structure

» General advice
Continuous data: Empirical approach
o Gaussian if large n_train or M
o Pair-copula if very heavy tails
Categorical/mixed data: Ctree
Future: Maybe VAEAC when properly implemented

» TreeSHAP and KernelSHAP available from the shap Python library do NOT
give useable estimates of v(S) = E[f (x)|xs = x5] unless all features are close

to independent
19



Different prediction explanation games

>

Observational/conditional Shapley values uses
vc(S) = E[f (0)]|xs = x5] = ff(xS» x)p(xg|xs = x5)dxg Janzing et al. (2019)

Interventional Shapley values uses ]

Vao(S) = E[f()|do(xs = x5)] = [ f (x5, x)p(xs|do(xs = x5))dxs = [ f (x5 x5)p(x5)dxs = v;(S)
Chen et al. (2020) states that whether v-(S) or v;(S) is most appropriate depends on
the application

v-(S) is most approriate if you want to learn about the actual relationship between
features and modelled response

v;(S) is appropriate if you are debugging your model

Heskes et al. (2020): Causal Shapley values rork Confounder
vao(S) = EIF(ldoCrs = x9)] = J flxs, xdpCxsldoCes = x)dxs, 1 o1 ,,@@,,
but p(xs|do(xs = x5)) # p(xs), SO V4,(S) # v;(S) ! o) | : (%)

=  Rather model p(xs|do(xs = x5)) with assumed causal ordering s s %{% NE

~ Requires estimate conditional distributions, but not all combinations @ @ @



Different prediction explanation games
My viewpoint

>

Independence/Interventional Shapley values (v;(S)) is only appropriate if
. all features close to independent

. or all dependence between features are due to a common confounder

. You are debugging/testing robustness of your model

Use Causal Shapley values
. when you have confident knowledge about causal dependence between features

All other cases: Use observational/conditional Shapley values

. Observational/conditional Shapley values < Causal Shapley values if no features are
assumed to causally affect other features

21



Two main challenges

1.  The computational complexity in the Shapley formula is of size 2™
IS (IM] —[S| -1 .
¢j = Z ( M )(U(SU{]})_U(S))
SSM\ {j} '

o Approximate solutions may be obtained by using a finite sample of subsets S
(KernelSHAP; Lundberg & Lee, 2017)

22



Computational bottlenecks  w-s-2—s

M =10 = 2™ = 1024

M =20 = 2™ = 1048676
. . . M .
1. The sum Iin the Shapley value formula is of size 2™, growing  ;, _ 45 oM < 1o2

exponentially in the number of features M =100 = 2™ > 10%
M = 1000 = 2¥ > 103"

2. How can we visualize, interpret and extract knowledge from
100s or 1000s of Shapley values?

Shapley values ¢@; per feature

Dmuf 0 O O I O l I
ﬂn DIHH|ID|D,,H|IDD.DD|I“ .H . r,Dllﬂu. I .H it

Typically: the sum of many small ¢; > sum of the few large ones

Many highly dependent features complicates the interpretation
23



XALit 2021 - Tralian Workshop on Explainable Artificial Intelligence
S h I Efficient and simple prediction explanations with
g ro u p ap ey groupShapley: A practical perspective
Martin Jullum!, Annabelle Redelmeier’ and Kjersti Aas’

JI\Iorwegimz Computing Center, P.O. Box 114, Blindern, N-0314 Oslo, Norway

» Fundamentally very simple approach
. Divide the M features into a small number of G disjoint groups {G;, ..., G¢}.
. Replace the feature subsets S in the Shapley formula by group subsets T
be,= ) w(TD(v(TUG) - v(T)
T<SG6\{G}
. The scores are still Shapley values, so all mathematical properties are kept (on group level)

Shapley value contribution ¢¢. per feature group
» What about the bottlenecks? A

» 20 « 2M = computationally tractable pos (+) -- .
= G small > easy to visualize neg (-)

\/

24



How to group the features?

» Crucial to group features based on the desired explanation

» Grouping based on feature dependence

. Highly dependent features grouped together, using e.g. a clustering method.
. Easier to study theoretically
. Often difficult to extract knowledge from in practice

» Grouping based on application/feature knowledge
. Group features of similar type or general category
. Gives directly meaningful interpretations of computed groupShapley values
. May perform multiple explanations with different groupings for increased understanding

» We advocate grouping based on feature knowledge in practical applications

25



Practical example 1: Car insurance

» US Car insurance dataset

. 10 302 customers with records of
crash/no crash + 21 features

. Fit a random forest model with 500 trees
to predict crash based on the 21 features

. 3 feature groups based on type

o Track record (4 features): # claims last 5 years, # licence record points, previous
licence revokes, time as customer

- Personal information (13 features): age of driver, education level, # children, job type,
# driving children, marital status, gender, distance to work +++

o Car information (4 features) value of car, age of car, type of car, whether car is red

26



Practical example 1: Car insurance

» Explain predictions for 3 individuals

1.

1 claim last 5 years, 3 licence record points.
Single mother of 4 (2 driving).
Driving a SUV, 27 miles to work.

Got licence revoked and 10 licence record points.
37 year old father of 2 (1 driving).

3 claims last 5 years, no licence record points
60 year old married doctor with no children, with a PhD

Red sports car.

id: 1, pred = 0.33

id: 2, pred = 0.65

id: 3, pred = 0.10

Track Record -

Personal_Info =

Car_Info =

I I I
-01 0.0 0.1 0.2 0.3

Feature group contribution

- Increases Decreases

27



Practical example 2. Gene data

. o %
» Disease classification with high dimensional gene data ™. 5 o~
. . . . // 5&'\\\,——,:’«2\:\,; ------
" 127 patients where 85 are diseased with either Crohn’s » ),;//,'SM ’, ,

disease (CD) or Ulcerative colitis (UC) + 42 healthy controls.
: 4 834 genes (after pre-processing)

. Using 100 random individuals, we fit a Lasso penalized linear
regression model to predict P(diseased with either CD or UC)
based on the patient’s genes

“\0\ - ,s
.v‘ %, e ‘,‘ \

» Feature groups

. Use the so-called Hallmark gene set to group the features (genes) into 23 different groups
commonly used in gene set enrichment analysis

. The Hallmark gene set “conveys a specific biological state or process” (Liberzon et al., 2015)

28
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>
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..Q,.
Software JSS

shapr: An R-package for explaining machine learning
models with dependence-aware Shapley values

> R_package Shapr Nikolai Sellereite! and Martin Jullum!

=  Computes Shapley values for any model f(x) with different dependence-aware
methods for estimating v(S)

= All functionality works for both feature-wise and group-wise Shapley values

=  Currently undergoing heavy restructuring to allow
o Parallellization
o Reduce memory usage
o Causal Shapley values
o Improved user experience +++
o Python wrapper

30



Take home points

>

The Shapley value framework from game theory can be used to explain
predictions from any ML model

Shapley value measures the value of observing each feature

There are two main challenges with such explanations

. Computational complexity -> Approximate by sample of subsets S, or explain feature
groups instead

. Estimating contribution function v(S) -> Several differnet methods for different settings

There exists other prediction explanation games:
. Interventional Shapley values can be used for “debugging”
. Causal Shapley values is promising if you have prior causal knowledge

You can do most (hopefully all quite soon) types of prediction explanations
efficiently with the shapr R-package

. See package vignette at https://norskregnesentral.github.io/shapr/ for an intro



https://norskregnesentral.github.io/shapr/
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