

Big**Insight**

Explaining individual predictions when features are dependent:

More accurate approximations to Shapley values

Kjersti Aas, **Martin Jullum (jullum@nr.no),** Anders Løland

Paper presentation, Journal track, IJCAI 2021

Prediction explanation – by example

Car insurance

- Response y: The insured crashes
- Features $x = (x_1, ..., x_M)$: Data about the insured, his/her car and crashing history
- Predictive model f: Model trained to predict probability of crash: $f(x) \approx \Pr(y = yes | x)$

Prediction explanation

• Why did a guy with features x^* get a predicted probability of crashing equal to $f(x^*)=0.3$?

Shapley values

- ► Concept from (cooperative) game theory in the 1950s
- Used to distribute the total payoff to the players
- ► Explicit formula for the "fair" payment to every player *j*:

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

v(S) is the payoff with only players in subset S

Several mathematical optimality properties

Shapley values for prediction explanation

- ► Approach popularised by Lundberg & Lee (2017)
 - Players = features $(x_1, ..., x_M)$
 - Payoff = prediction $(f(x^*))$
 - Contribution function: $v(S) = E[f(x)|x_S = x_S^*]$
 - Properties

$$\sum_{j=1}^{M} \phi_j = f(\mathbf{x}^*) - \phi_0$$

$$f(x) \perp \perp x_j$$

implies $\phi_i = 0$

$$x_i, x_j$$
 same contribution implies $\phi_i = \phi_i$

Rough interpretation of ϕ_j : The prediction change when you don't know the value of x_i – averaged over all features

Shapley values for prediction explanation

Two main challenges

1. The computational complexity in the Shapley formula

$$\phi_j = \sum_{S \subseteq M \setminus \{j\}} \frac{|S|! (|M| - |S| - 1)}{|M|!} (v(S \cup \{j\}) - v(S))$$

 Approximate solutions may be obtained by cleverly reducing the sum by subset sampling (KernelSHAP; Lundberg & Lee, 2017)

Shapley values for prediction explanation

Two main challenges

2. Estimating the contribution function

$$v(S) = E[f(x)|x_S = x_S^*] = \int f(x_{\bar{S}}, x_S) p(x_{\bar{S}}|x_S = x_S^*) dx_{\bar{S}}$$

Lundberg & Lee (2017)

- Approximates $v(S) \approx \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_{S}^{*}) p(\mathbf{x}_{\bar{S}}) d\mathbf{x}_{\bar{S}}$,
- Estimates $p(x_{\bar{S}})$ using the empirical distribution of the training data
- Monte Carlo integration to solve the integral

This assumes the features are independent!

Consequences of the independence assumption

Requires evaluating $f(x_{\bar{S}}, x_{\bar{S}})$ at potentially <u>unlikely or illegal</u> combinations of $x_{\bar{S}}$ and $x_{\bar{S}}$

Example 1

- Number of transactions to Switzerland: ()
- Average transaction amount to Switzerland: 100 €

► Example 2

Age: 17

Marital status: Widow

Profession: Professor

The idea of the present paper

Estimate $p(x_{\bar{S}}|x_S = x_S^*)$ properly

+

Monte Carlo integration to approximate

$$v(S) = E[f(\mathbf{x})|\mathbf{x}_S = \mathbf{x}_S^*] = \int f(\mathbf{x}_{\bar{S}}, \mathbf{x}_S) p(\mathbf{x}_{\bar{S}}|\mathbf{x}_S = \mathbf{x}_S^*) d\mathbf{x}_{\bar{S}}$$

by sampling from $p(x_{\bar{S}}|x_S = x_S^*)$

^{*}Following the preprint of the present paper, other papers have used similar approaches

3 approaches to estimate and sample from $p(x_{\bar{S}}|x_{\bar{S}}=x_{\bar{S}}^*)$

- 1. Assume p(x) is Gaussian $N(\mu, \Sigma)$
 - 1. Estimate μ , Σ using the training data
 - 2. Obtain analytical expression for $p(x_{\bar{S}}|x_S = x_S^*)$ to sample from

- 1. Transform all features in the training data to N(0,1): $(v_1, ..., v_M)$
- 2. Estimate the correlation Σ^* in $(v_1, ..., v_M)$
- 3. Obtain analytical expression for $p(v_{\bar{S}}|v_S=v_S^*)$ to sample from
- 4. Transform the samples back to original scale

Gaussian distribution

Gaussian Copula

3 approaches to estimate and sample from $p(x_{\bar{\varsigma}}|x_{\bar{\varsigma}}=x_{\bar{\varsigma}}^*)$

- 3. Use an empirical (conditional) distribution which weights the training observations $(x_{\bar{S}}^i)$ by their proximity to $x_{\bar{S}}^*$:
 - 1. Compute the scaled Mahalanobis distance between x_S^* and the columns S of the training data $x^1, ... x^n$

$$D_{\mathcal{S}}(\boldsymbol{x}^*, \boldsymbol{x}^i) = \sqrt{\frac{(\boldsymbol{x}_{\mathcal{S}}^* - \boldsymbol{x}_{\mathcal{S}}^i)^T \Sigma_{\mathcal{S}}^{-1} (\boldsymbol{x}_{\mathcal{S}}^* - \boldsymbol{x}_{\mathcal{S}}^i)}{|\mathcal{S}|}}$$

2. Use Gaussian kernel to get weights for each training observation:

$$w_{\mathcal{S}}(\boldsymbol{x}^*, \boldsymbol{x}^i) = \exp\left(-\frac{D_{\mathcal{S}}(\boldsymbol{x}^*, \boldsymbol{x}^i)^2}{2\sigma^2}\right)$$

3. Use the training observations $x_{\bar{S}}^i$ weighted by $w_S(x^*, x^i)$ as a sample from $p(x_{\bar{S}}|x_S = x_S^*)$

^{*} $w_S(x^*, x^i)$ =1/n corresponds to the independence method of Lundberg & Lee (2017)

Simulation experiments

- Generally outperform original (independence) and TreeSHAP approaches
- Often the empirical approach is best for small S, and Gaussian/copula better for largest S

Sampling model: Piecewise constant, feature distribution: Gaussian, dimension: 3

Real data example from finance

- 28 features extracted from financial time series used to predict mortgage default
- Used a combination of our empirical and Gaussian method + original (independence) approach to explain predictions
- For some individuals we got very different explanations

method

br mean

Conclusion

- We explain individual predictions using the Shapley value framework
- ► We improve upon the original KernelSHAP approach (assuming feature independence) of Lundberg & Lee (2017) by accounting for the dependence
 - 3 methods: Gaussian, Gaussian copula and empirical (conditional) approach
- We outperform the independence approach and TreeSHAP in simulations
- Our method is implemented in the R-package shapr, available on CRAN and GitHub

References

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In *Proceedings of the 31st international conference on neural information processing systems* (pp. 4768-4777).

Our paper

Aas, K., Jullum, M., & Løland, A. (2021). Explaining individual predictions when features are dependent: More accurate approximations to Shapley values. *Artificial Intelligence*, 298, 103502.