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► Car insurance 

▪ Response 𝑦: The insured crashes

▪ Features 𝒙 = (𝑥1, … , 𝑥𝑀): Data about the 

insured, his/her car and crashing history

▪ Predictive model 𝑓: Model trained to predict 

probability of crash: 𝑓 𝒙 ≈ Pr 𝑦 = 𝑦𝑒𝑠 𝒙

► Prediction explanation

▪ Why did a guy with features 𝒙∗ get a 

predicted probability of crashing equal to 

𝑓(𝒙∗)= 0.3?
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Prediction explanation – by example



► Concept from (cooperative) game theory in the 1950s

► Used to distribute the total payoff to the players

► Explicit formula for the “fair” payment to every player 𝑗:

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑆 ! ( 𝑀 − 𝑆 − 1)

𝑀 !
𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

𝑣 𝑆 is the payoff with only players in subset 𝑆

► Several mathematical optimality properties

Shapley values

𝑀



► Approach popularised by Lundberg & Lee (2017)

▪ Players = features (𝑥1, … , 𝑥𝑀)

▪ Payoff = prediction (𝑓(𝒙∗))

▪ Contribution function:  𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗

▪ Properties

σ𝑗=1
𝑀 𝜙𝑗 = 𝑓 𝒙∗ − 𝜙0 𝜙0 = 𝐸 𝑓 𝒙

𝑓 𝒙 𝑥𝑗 𝑥𝑖 , 𝑥𝑗 same contribution 

implies 𝜙𝑗 = 0 implies 𝜙𝑖 = 𝜙𝑗

► Rough interpretation of 𝜙𝑗: The prediction change when you don’t know the 

value of 𝑥𝑗 – averaged over all features
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Shapley values for prediction explanation



► Two main challenges

1. The computational complexity in the Shapley formula

𝜙𝑗 = ෍

𝑆⊆𝑀\ 𝑗

𝑆 ! ( 𝑀 − 𝑆 − 1)

𝑀 !
𝑣 𝑆 ∪ {𝑗} − 𝑣 𝑆

◦ Approximate solutions may be obtained by cleverly reducing the sum by 

subset sampling (KernelSHAP; Lundberg & Lee, 2017)
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Shapley values for prediction explanation



► Two main challenges

𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗ d𝒙 ҧ𝑆

◦ Lundberg & Lee (2017) 

· Approximates 𝑣 𝑆 ≈ ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆
∗)𝑝 𝒙 ҧ𝑆 d𝒙 ҧ𝑆, 

· Estimates 𝑝 𝒙 ҧ𝑆 using the empirical distribution of the training data 

· Monte Carlo integration to solve the integral

This assumes the features are independent!
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Shapley values for prediction explanation

Recall

2.  Estimating the contribution function



► Requires evaluating 𝑓(𝒙 ҧ𝑆, 𝒙𝑆) at potentially unlikely or illegal combinations of 

𝒙 ҧ𝑆 and 𝒙𝑆
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Consequences of the independence assumption

► Example 1

▪ Number of transactions to   

Switzerland: 

▪ Average transaction amount 

to Switzerland:

► Example 2

▪ Age: 

▪ Marital status:

▪ Profession:

0

100 €

17

Widow

Professor



The idea of the present paper

Estimate 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ properly 

+ 

Monte Carlo integration to approximate 

by sampling from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗

*Following the preprint of the present paper, other papers have 

used similar approaches  
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𝑣 𝑆 = 𝐸 𝑓 𝒙 𝒙𝑆 = 𝒙𝑆
∗ = ∫ 𝑓(𝒙 ҧ𝑆, 𝒙𝑆)𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗ d𝒙 ҧ𝑆



1. Assume 𝑝(𝒙) is Gaussian 𝑁(𝝁, 𝚺)
1. Estimate 𝝁, 𝚺 using the training data

2. Obtain analytical expression for 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗ to sample from

2. Assume 𝑝(𝒙) is a Gaussian copula

1. Transform all features in the training data to 𝑁 0,1 : (𝑣1, … , 𝑣𝑀)

2. Estimate the correlation 𝚺∗ in (𝑣1, … , 𝑣𝑀)

3. Obtain analytical expression for 𝑝 𝒗 ҧ𝑆|𝒗𝑆 = 𝒗𝑆
∗ to sample from

4. Transform the samples back to original scale
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3 approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗
Gaussian distribution



3. Use an empirical (conditional) distribution which weights 

the training observations (𝒙 ҧ𝑆
𝒊 ) by their proximity to 𝒙𝑆

∗:

1. Compute the scaled Mahalanobis distance between 𝒙𝑆
∗ and the 

columns 𝑆 of the training data 𝒙1, … 𝒙𝑛

2. Use Gaussian kernel to get weights for each training observation: 

3. Use the training observations 𝒙 ҧ𝑆
𝒊 weighted by 𝑤𝑆(𝒙

∗, 𝒙𝑖) as a sample from  𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆
∗

* 𝑤𝑆(𝒙
∗, 𝒙𝑖)=1/n corresponds to the independence method of Lundberg & Lee (2017)
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3 approaches to estimate and 
sample from 𝑝 𝒙 ҧ𝑆|𝒙𝑆 = 𝒙𝑆

∗



► Generally outperform

original 

(independence) and 

TreeSHAP

approaches

► Often the empirical

approach is best for 

small 𝑆, and 

Gaussian/copula

better for largest 𝑆
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Simulation experiments



► 28 features extracted from financial time series used to predict mortgage default

► Used a combination of our empirical and Gaussian method + original 

(independence) approach to explain predictions 

► For some individuals

we got very different 

explanations
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Real data example from finance



► We explain individual predictions using the Shapley value framework

► We improve upon the original KernelSHAP approach (assuming feature 

independence) of Lundberg & Lee (2017) by accounting for the dependence

▪ 3 methods: Gaussian, Gaussian copula and empirical (conditional) approach

► We outperform the independence approach and TreeSHAP in simulations

► Our method is implemented in the R-package shapr, 

available on CRAN and GitHub
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