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Prediction explanation — by example

» Carinsurance
Response y: The insured crashes

Features x = (x4, ..., xy): Data about the
iInsured, his/her car and crashing history

Predictive model f: Model trained to predict
probability of crash: f(x) = Pr(y = yes|x)

» Prediction explanation

Why did a guy with features x* get a
predicted probability of crashing equal to
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Shapley values

» Concept from (cooperative) game theory in the 1950s
» Used to distribute the total payoff to the players

» Explicit formula for the “fair” payment to every player j:

S| (M| - |S| -1
b; = MNI{ ||M|'| | )(v(SU{/'})—v(S))
seM\ {j} '

v(S) is the payoff with only players in subset S

» Several mathematical optimality properties /\




Shapley values for prediction explanation

» Approach popularised by Lundberg & Lee (2017)

Players = features (x4, ..., xp;)
Payoff = prediction (f (x*))
Contribution function: v(S) = E[f(x)|xs = xg] 7 xg
Properties
;YI=1 ¢; = f(x7) — oo $o = f(x)
fx) 1l x X;, x; Same contribution
implies ¢; =0 implies ¢; = ¢;

» Rough interpretation of ¢;: The prediction change when you don’t know the
value of x; — averaged over all features



Shapley values for prediction explanation

» Two main challenges

1. The computational complexity in the Shapley formula

SI'(M| — 15[ —1
b = 2 s v ) - v(®)

SEM\ {j}

o Approximate solutions may be obtained by cleverly reducing the sum by
subset sampling (KernelSHAP; Lundberg & Lee, 2017)



Shapley values for prediction explanation

X
» Two main challenges

Recall Xg 7 Xs

2. Estimating the contribution function

v(S) = E[f(X)|xs = x5] = [ f(x5,x5)p(xs|xs = x5)dxs

o Lundberg & Lee (2017)
Approximates v(S) = [ f(xs x)p(xs)dxs,
Estimates p(x:) using the empirical distribution of the training data
Monte Carlo integration to solve the integral

This assumes the features are independent!




Consequences of the independence assumption

» Requires evaluating f(xs, xs) at potentially unlikely or illegal combinations of

xz and xs
» Example 1 » Example 2
Number of transactions to = Age: 17
Switzerland: 0O . Marital status: Widow
Average transaction amount - Profession: Professor

to Switzerland: 100 €




The idea of the present paper
Estimate p(xz|x; = xc) properly
+

Monte Carlo integration to approximate

v(S) = E[f(x)|xs = x5] = | f(xg, x5)p(xs|xs = x5)dxs

by sampling from p(x:|xs = x¢)

*Following the preprint of the present paper, other papers have
used similar approaches



3 approaches to estimate and
sample from p(xz|xs = x¢)

1. Assume p(x) is Gaussian N(u, X)
1. Estimate u, X using the training data
2. Obtain analytical expression for p(xz|xs = x¢) to sample from

Gaussian distribution

2. Assume p(x) is a Gaussian copula
1. Transform all features in the training datato N(0,1):  (vy, ..., V)
2. Estimate the correlation Z* in (vq, ..., vp)
3. Obtain analytical expression for p(v¢|vg = vi) to sample from
4. Transform the samples back to original scale

Gaussian Copula
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3 approaches to estimate and
sample from p(xs|xs = x¢)

3. Use an empirical (conditional) distribution which weights
the training observations (xz) by their proximity to xg:

1. Compute the scaled Mahalanobis distance between x; and the " | °
columns S of the training data x1, ... x™

i} . ((B* o 33?: )Tz—l(m* o .’Bi )
DS(ZC T ) — \/ S S |Sf|>' S S

2. Use Gaussian kernel to get weights for each training observation:
Dg(m*.:cé)z)

202

ws(xz*, x') = exp (—
3. Use the training observations xf;— weighted by wg(x*, x*) as a sample from p(xs|xs = x5)

* we(x*, x1)=1/n corresponds to the independence method of Lundberg & Lee (2017)



Simulation experiments
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Real data example from finance

» 28 features extracted from financial time series used to predict mortgage default

» Used a combination of our empirical and Gaussian method + original
(independence) approach to explain predictions

» For some individuals -
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Conclusion

» We explain individual predictions using the Shapley value framework

» We improve upon the original KernelSHAP approach (assuming feature
Independence) of Lundberg & Lee (2017) by accounting for the dependence
. 3 methods: Gaussian, Gaussian copula and empirical (conditional) approach

» We outperform the independence approach and TreeSHAP in simulations

R

» Our method is implemented in the R-package shapr,
available on CRAN and GitHub
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